В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=75
b1+b1q=75
b1(1+q)=75
2) b2+b3=150
b1q+b1q2=150
b1(q+q2)=150
b1(q+1)q=150
Подставляем из п. 1)
75q=150 => q=2, тогда b1(1+2)=75 => b1=25
b2=25*2=50
b3=25*22=100
Ответ: b1=25, b2=50, b3=100
Поделитесь решением
Присоединяйтесь к нам...
Выписано несколько последовательных членов арифметической прогрессии: -39; -30; -21; … Найдите первый положительный член этой прогрессии.
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.
Геометрическая прогрессия задана условиями b1=-1, bn+1=2bn. Найдите b7.
Выписано несколько последовательных членов геометрической прогрессии:
…; 1,5; x; 24; -96; …
Найдите x.
В геометрической прогрессии сумма первого и второго членов равна 50, а сумма второго и третьего членов равна 200. Найдите первые три члена этой прогрессии.
Комментарии: