Геометрическая прогрессия задана условием bn=62,5*2n. Найдите сумму первых её 4 членов.
Чтобы найти сумму первых 4 членов данной
геометрической прогрессии, воспользуемся
формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q -
знаменатель прогрессии.
b1=62,5*21=125 (из условия задачи). А q=2.
Тогда S4=125*(1-24)/(1-2)=125*(1-16)/(-1)=125*15=1875
Ответ: S4=1875
Поделитесь решением
Присоединяйтесь к нам...
В геометрической прогрессии сумма первого и второго членов равна 200, а сумма второго и третьего членов равна 50. Найдите первые три члена этой прогрессии.
Арифметическая прогрессия (an) задана условиями a1=48, an+1=an-17. Найдите сумму первых 17 её членов.
Геометрическая прогрессия задана условием bn=40*(-2)n. Найдите сумму первых её 5 членов.
Дана арифметическая прогрессия (an), в которой a9=-15,7, a18=-22,9.
Найдите разность прогрессии.
Выписаны первые несколько членов арифметической прогрессии: -7; -4; -1; … Найдите сумму первых десяти её членов.
Комментарии:
(2019-02-25 22:25:55) Администратор: Юля, в геометрической прогрессии q - это число, которое возводится в степень. Например: b{n}=5*3^n, для это прогрессии q=3.
(2019-02-25 16:02:10) юля: откуда взялась q=2