ОГЭ, Математика. Числовые последовательности: Задача №492D85 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Чтобы найти сумму первых 4 членов данной геометрической прогрессии, воспользуемся формулами. В нашем случае, удобней воспользоваться первой. Для этого необходимо узнать b1 - первый член прогрессии и q - знаменатель прогрессии.
b1=62,5*21=125 (из условия задачи). А q=2.
Тогда S4=125*(1-24)/(1-2)=125*(1-16)/(-1)=125*15=1875
Ответ: S4=1875

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №43A083

Арифметическая прогрессия задана условием an=-0,6+8,6n. Найдите сумму первых 10 её членов.



Задача №475D55

Последовательность (bn) задана условиями b1=-6, bn+1=-2*(1/bn). Найдите b5.



Задача №DAB7E3

Дана арифметическая прогрессия (an), в которой a3=6,9, a16=26,4.
Найдите разность прогрессии.



Задача №0000DB

(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.



Задача №1D48D6

Дана арифметическая прогрессия (an), разность которой равна 0,6 и a1=6,2. Найдите сумму первых шести её членов.

Комментарии:


(2019-02-25 22:25:55) Администратор: Юля, в геометрической прогрессии q - это число, которое возводится в степень. Например: b{n}=5*3^n, для это прогрессии q=3.
(2019-02-25 16:02:10) юля: откуда взялась q=2

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Геометрическая прогрессия — последовательность чисел b1, b2, b3,...(членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b1≠0, q≠0: b1, b2=b1q, b3=b2q,...,bn=bn-1q
Любой член геометрической прогрессии может быть вычислен по формуле: bn=b1qn-1
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика