Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.
Проведем отрезок АО.
Обозначим одну из точек касания окружности и касательной как Р.
Проведем отрезок ОР.
ОР является радиусом и перпендикуляром к касательной АР (по свойству касательной).
Рассмотрим треугольник АОР.
Данный треугольник является прямоугольным,т.к. ОР перпендикулярен АР.
АО является биссектрисой угла, образованного касательными (свойство касательных прямых). Следовательно, угол РАО равен половине данного угла, т.е. 30°.
sinPAO=OP/AO (по определению синуса).
sin30°=8/AO
1/2=8/AO (по таблице синусов)
1=2*8/AO
AO=16
Ответ: 16
Поделитесь решением
Присоединяйтесь к нам...
Биссектрисы углов A и B при боковой стороне AB трапеции ABCD пересекаются в точке F. Найдите AB, если AF=21, BF=20.
Боковые стороны AB и CD трапеции ABCD равны соответственно 12 и 15, а основание BC равно 3. Биссектриса угла ADC проходит через середину стороны AB. Найдите площадь трапеции.
На каком расстоянии (в метрах) от фонаря стоит человек ростом 1,8 м, если длина его тени равна 1 м, высота фонаря 9 м?
Окружности радиусов 44 и 77 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Прямая, параллельная основаниям трапеции
ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=42, BC=14, CF:DF=4:3.


Комментарии:
(2019-01-26 16:56:06) Администратор: Данила, я расписал решение немного подробней, надеюсь, стало понятней. Если нет, пишите.
(2019-01-25 16:13:14) Данила: И почему мы взяли именно значение синуса?
(2019-01-25 15:51:47) Данила: Откуда взято 2?
(2016-12-05 22:33:33) Администратор: катя, посмотрите задачу 101 из раздела "Статистика и теория вероятностей", очень похожа на Вашу.
(2016-12-05 17:26:10) катя: В среднем на 50 карманных фонариков, поступивших в продажу, приходится восемь неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен