В треугольнике ABC BM – медиана и BH – высота. Известно, что AC=88 и BC=BM. Найдите AH.
Так как BM -
медиана, значит AM=MC=AC/2=88/2=44
Рассмотрим треугольник MBC.
Т.к. BC=BM (по условию задачи), значит этот треугольник
равнобедренный, BH -
высота этого треугольника. По
третьему свойству равнобедренного треугольника MH=HC=MC/2=44/2=22
Искомая AH=AC-HC=88-22=66
Ответ: AH=66
Поделитесь решением
Присоединяйтесь к нам...
Площадь параллелограмма ABCD равна 176. Точка E — середина стороны AD. Найдите площадь трапеции AECB.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные
30° и 105° соответственно.
В параллелограмме ABCD диагональ AC в 2 раза больше стороны AB и ∠ACD=1°. Найдите угол между диагоналями параллелограмма. Ответ дайте в градусах.
Окружность с центром на стороне AC треугольника ABC проходит через вершину C и касается прямой AB в точке B. Найдите диаметр окружности, если AB=15, AC=25.
Найдите площадь треугольника, изображённого на рисунке.
Комментарии:
(2017-05-07 22:39:31) Администратор: Решите свою задачу аналогично этой.
(2017-05-05 11:08:35) : В треугольнике ABC BM — медиана и BH — высота. Известно, что AC = 97 и BC = BM. Найдите AH.