Постройте график функции
-x2-2x+2, если x≥-3,
-x-4, если x<-3,
и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=-x2-2x+2 на диапазоне [-3;+∞)
y2=-x-4 на диапазоне (-∞;-3)
График первой подфункции - парабола, будем строить его просто по точкам (красный график):
X | -3 | -2 | -1 | 0 |
Y | -1 | 2 | 3 | 2 |
X | -3 | -4 | -5 |
Y | -1 | 0 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=-6/x 2) y=-(1/2)x2 3) y=(1/2)x-2 4) y=-(1/2)x2-2 |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b>0
2) k<0, b<0
3) k>0, b>0
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Постройте график функции y=|x2-9|. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a>0, c>0 2) a>0, c<0 3) a<0, c>0 4) a<0, c<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Комментарии: