Постройте график функции
-x2-2x+2, если x≥-3,
-x-4, если x<-3,
и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Чтобы построить график этой функции, надо построить график каждой подфункции на указанных для подфункций диапазонах.
y1=-x2-2x+2 на диапазоне [-3;+∞)
y2=-x-4 на диапазоне (-∞;-3)
График первой подфункции - парабола, будем строить его просто по точкам (красный график):
X | -3 | -2 | -1 | 0 |
Y | -1 | 2 | 3 | 2 |
X | -3 | -4 | -5 |
Y | -1 | 0 | 1 |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между графиками функций и формулами, которые их задают.
ФУНКЦИИ | ГРАФИКИ | ||
1) y=1/x 2) y=-x2-2 3) y=(1/2)x 4) y=-(1/2)x |
А) ![]() |
Б) ![]() |
В) ![]() |
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В)
ФОРМУЛЫ
1) y=-x2
2) y=-x
3) y=-1/x
В таблице под каждой буквой укажите соответствующий номер.
Установите соответствие между графиками функций и формулами, которые их задают. Впишите в приведённую в ответе таблицу под каждой буквой соответствующую цифру.
ФОРМУЛЫ | Графики | ||
1) y=-x2+7x-14 2) y=x2-7x+14 3) y=x2+7x+14 4) y=-x2-7x-14 |
A)![]() |
Б)![]() |
В)![]() |
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
На рисунке изображён график квадратичной функции y=f(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) f(-1)=f(5)
2) Функция убывает на промежутке [2; +∞)
3) f(x)>0 при x<-1 и при x>5
Комментарии: