В параллелограмме ABCD точка K — середина стороны AB. Известно, что KC = KD. Докажите, что данный параллелограмм — прямоугольник.
Рассмотрим треугольники DAK и KBC. AK=KB, т.к. точка K - середина AB, KC=KD (из условия задачи), AD=BC (по свойству параллелограмма). Соответственно, треугольники DAK и KBC равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что /DAK=/KBC.
AD||BC (по определению параллелограмма), рассмотрим сторону AB как секущую к этим параллельным сторонам. Тогда получается, что сумма углов DAK и KBC равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Теперь рассмотрим стороны AB и CD, они параллельны (тоже по определению параллелограмма). Рассмотрим сторону AD как секущую к этим параллельным сторонам.
/DAK и /ADC - внутренние односторонние. Следовательно их сумма равна 180°. А так как /DAK=90°, то /ADC тоже равен 90°.
Аналогично доказывается, что /BCD тоже равен 90°.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, sinA=0,4, AC=√
Какие из следующих утверждений верны?
1) Площадь треугольника меньше произведения двух его сторон.
2) Средняя линия трапеции равна сумме её оснований.
3) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Диагональ AC параллелограмма ABCD образует с его сторонами углы, равные 45° и 40°. Найдите больший угол параллелограмма.
В прямоугольном треугольнике ABC катет AC=25, а высота CH, опущенная на гипотенузу, равна 10√
Основания трапеции равны 3 и 9, а высота равна 5. Найдите среднюю линию этой трапеции.
Комментарии:
(2016-10-09 00:43:15) Администратор: Константин, Мы не помогаем решить домашнее задание, цель сайта - подробно разобрать задачи, которые будут на экзаменах, чтобы учащиеся научились их решать самостоятельно. Если найдете похожую задачу на сайте fipi.ru, пишите, обязательно добавим.
(2016-10-07 21:07:51) Константин: Известно, что f(x)=x^(3/2), g(x)=x^3 Докажите, что f(27x^3)=g^2(x) Докажите, что