Известно, что графики функций y=x2+p и y=2x-5 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Чтобы найти общую точку двух графиков, надо найти решение системы, составленное из уравнений этих графиков:
y=x2+p
y=2x-5
x2+p=2x-5
x2+p-2x+5=0
x2-2x+(5+p)=0
Это квадратное уравнение должно иметь только один корень, т.к. по условию, графики пересекаются только в одной точке. Следовательно, дискриминант должен быть равен нулю.
D=(-2)2-4*1*(5+p)=4-20-4p=-16-4p=0
p=-4
Получаем уравнение:
x2-2x+5-4=0
x2-2x+1=0
(x-1)2=0
x=1 - это координата "х" точки пересечения.
y=2x-5=2*1-5=2-5=-3 - это координата "y" точки пересечения.
Получаем: координаты точки пересечения графиков (1;-3).
Построим графики по точкам:
y=x2+p=y=x2-4 (Красный график)
X | -2 | -1 | 0 | 1 | 2 |
Y | 0 | -3 | -4 | -3 | 0 |
X | 0 | 1 | 2 |
Y | -5 | -3 | -1 |
Поделитесь решением
Присоединяйтесь к нам...
На графике показано изменение температуры в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя, на вертикальной оси — температура двигателя в градусах Цельсия. Определите по графику,
через сколько минут с момента запуска двигатель нагреется до 40°C.
Установите соответствие между графиками функций и формулами, которые их задают.
ФОРМУЛЫ | ГРАФИКИ | ||
1) y=-2 2) y=x-2 3) y=-2x |
А) ![]() |
Б) ![]() |
В) ![]() |
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k>0, b>0 2) k<0, b>0 3) k>0, b<0 4) k<0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
На графике показано изменение температуры воздуха на протяжении трёх суток. По горизонтали указывается дата и время, по вертикали — значение температуры в градусах Цельсия. Определите по графику наименьшую температуру воздуха 30 мая. Ответ дайте в градусах Цельсия.
Постройте график функции
y=x|x|-|x|-2x.
Определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: