Постройте график функции y=2|x-5|-x2+11x-30 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
2(x-5)-x2+11x-30, при x-5≥0
-2(x-5)-x2+11x-30, при x-5<0
2x-10-x2+11x-30, при x≥5
-2x+10-x2+11x-30, при x<5
-x2+13x-40, при x≥5
-x2+9x-20, при x<5
Теперь построим графики обеих подфункций в определенных для них диапазонах, для этого найдем корни этих подфункций через
дискриминант:
1) -x2+13x-40=0
D=132-4(-1)(-40)=169-160=9
x1=(-13+3)/(2(-1))=5
x2=(-13-3)/(2(-1))=8
2) -x2+9x-20=0
D=92-4(-1)*20=81-80=1
x1=(-9+1)/(2(-1))=4
x2=(-9-1)/(2(-1))=5
Так как коэффициент а=-1 (т.е. меньше нуля), значит ветви параболы направлены вниз.
Теперь можем построить график:
Первая подфункция - красная:
X | 5 | 6 | 7 | 8 | 9 |
Y | 0 | 2 | 2 | 0 | -4 |
X | 5 | 4 | 3 | 2 |
Y | 0 | 0 | -2 | -6 |
Поделитесь решением
Присоединяйтесь к нам...
На графиках показано, как во время телевизионных дебатов между кандидатами А и Б телезрители голосовали за каждого из них. Сколько всего тысяч телезрителей проголосовало за первые 40 минут дебатов?
На рисунке изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) a<0, c>0 2) a<0, c<0 3) a>0, c<0 4) a>0, c>0 |
А) | Б) | В) |
На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между знаками коэффициентов a и c и графиками функций.
КОЭФФИЦИЕНТЫ
А) a>0, c<0
Б) a>0, c>0
В) a<0, c>0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=x2-4|x|-2x и определите, при каких значениях m прямая y=m имеет с графиком не менее одной, но не более трёх общих точек.
Постройте график функции y=x2-5|x|+6. Какое наибольшее число общих точек график данной функции может иметь с прямой, параллельной оси абсцисс?
Комментарии:
(2015-03-31 21:13:20) Администратор: Лена, справедливое замечание. В решение добавлены таблицы координат.
(2015-03-31 17:55:41) Лена : Так как коэффициент а=-1 (т.е. меньше нуля), значит ветви параболы направлены вниз. p.s вот до сюда всё понятно,а дальше,по каким координатам, строим график?