Точка О – центр окружности, /AOB=70° (см. рисунок). Найдите величину угла ACB (в градусах).
По условию /AOB=70°, этот угол является
центральным, соответственно дуга АВ (нижняя часть) тоже равна 70°. /ACB - является
вписанным углом и равен половине дуги, на которую опирается (
по теореме о вписанном угле). Соответственно, 70/2=35.
Ответ: /ACB=35°.
Поделитесь решением
Присоединяйтесь к нам...
Сторона ромба равна 24, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?
Прямая, параллельная основаниям трапеции ABCD, пересекает её боковые стороны AB и CD в точках E и F соответственно. Найдите длину отрезка EF, если AD=44, BC=24, CF:DF=3:1.
Высота равностороннего треугольника равна 96√
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны
и имеют одинаковую длину, равную 44. Найдите стороны треугольника ABC.
Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K. Найдите площадь параллелограмма, если BC=11, а расстояние от точки K до стороны AB равно 3.
Комментарии: