Последовательность задана формулой an=40/(n+1). Сколько членов этой последовательности больше 2?
Для решения этой задачи надо решить неравенство:
40/(n+1)>2
40>2(n+1)
20>n+1
19>n
Так как в
арифметической прогрессии n - натуральное, то нас интересуют только целые положительные числа, т.е. от 1 до 18. Таким образом получается, что при n=1, 2, 3,..., 18, an будет больше 2.
Ответ: 18
Поделитесь решением
Присоединяйтесь к нам...
В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 120. Найдите первые три члена этой прогрессии.
Арифметическая прогрессия задана условиями a1=0,9, an+1=an+1,1. Найдите сумму первых 11 её членов.
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5, b1=250. Найдите сумму первых 6 её членов.
В геометрической прогрессии сумма первого и второго членов равна 75, а сумма второго и третьего членов равна 150. Найдите первые три члена этой прогрессии.
Последовательность задана условиями b1=-3, bn+1=-3*1/bn. Найдите b4.
Комментарии: