В геометрической прогрессии сумма первого и второго членов равна 40, а сумма второго и третьего членов равна 120. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=40
b1+b1q=40
b1(1+q)=40
2) b2+b3=120
b1q+b1q2=120
b1(q+q2)=120
b1(q+1)q=120
Подставляем из п. 1)
40q=120 => q=3, тогда b1(1+3)=40 => b1=10
b2=10*3=30
b3=10*32=90
Ответ: b1=10, b2=30, b3=90
Поделитесь решением
Присоединяйтесь к нам...
Геометрическая прогрессия задана условием bn=-77*2n. Найдите сумму первых её 5 членов.
Дана арифметическая прогрессия (an), в которой a9=-15,7, a18=-22,9.
Найдите разность прогрессии.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 4 квадрата больше, чем в предыдущей. Сколько квадратов в 65-й строке?
Геометрическая прогрессия задана условием bn=-17,5*2n. Найдите сумму первых её 7 членов.
Дана геометрическая прогрессия (bn), знаменатель которой равен 2, b1=16. Найдите b4.
Комментарии: