Два велосипедиста одновременно отправляются в 60-километровый пробег. Первый едет со скоростью на 10 км/ч большей, чем второй, и прибывает к финишу на 3 часа раньше второго. Найдите скорость велосипедиста, пришедшего к финишу вторым.
Обозначим:
v1 - скорость первого велосипедиста, значит
v1-10 - скорость второго велосипедиста
t1 - время в пути первого велосипедиста, значит
t1+3 - время в пути второго велосипедиста
Уравнение движения для первого велосипедиста выглядит так:
60=v1*t1, t1=60/v1
Для второго:
60=(v1-10)*(t1+3)=v1*t1+3v1-10t1-30
60=v1*(60/v1)+3v1-10(60/v1)-30
60=60+3v1-600/v1-30
30=3v1-600/v1 |:3
10=v1-200/v1 |*v1
10v1=v12-200
0=v12-10v1-200
Решим это
квадратное уравнение:
D=(-10)2-4*1*(-200)=100+800=900
v1-1=(-(-10)+30)/(2*1)=40/2=20
v1-2=(-(-10)-30)/(2*1)=-20/2=-10
Отрицательной скорость быть не может, следовательно v1=20 км/ч.
Значит, скорость второго велосипедиста равна 20-10=10 км/ч.
Ответ: 10 км/ч
Поделитесь решением
Присоединяйтесь к нам...
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 20 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 210 км, скорость первого велосипедиста равна 20 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Из двух городов одновременно навстречу друг другу отправились два велосипедиста. Проехав некоторую часть пути, первый велосипедист сделал остановку на 20 минут, а затем продолжил движение до встречи со вторым велосипедистом. Расстояние между городами составляет 210 км, скорость первого велосипедиста равна 20 км/ч, скорость второго — 30 км/ч. Определите расстояние от города, из которого выехал второй велосипедист, до места встречи.
Решите уравнение -3x2+x+9=-x2-4x+(-2-2x2).
Укажите неравенство, решение которого изображено на рисунке.
1) x2-49≤0
2) x2+49≤0
3) x2-49≥0
4) x2+49≥0
Решите неравенство
Комментарии:
(2023-03-06 10:04:12) Влад: Рыболов проплыл на лодке от пристани некоторое расстояние вверх по течению реки, затем бросил якорь, 2 часа ловил рыбу и вернулся обратно через 5 часов от начала путешествия. На какое расстояние от пристани он отплыл, если скорость течения реки равна 2 км/ч, а собственная скорость лодки 5 км/ч?