Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка
в четыре с половиной раза ниже второй,
а вторая втрое уже первой. Во сколько раз объём первой коробки больше объёма второй?
Объем прямоугольной призмы:
V=S*h, где S - площадь основания, h - высота призмы, которая совпадает с ребром призмы.
В основании правильной призмы лежит правильный многоугольник, в данном случае
квадрат, следовательно площадь основания такой призмы:
S=a2, где a - сторона
квадрата.
Тогда:
V1=a12h1 - объем первой коробки.
V2=a22h2 - объем второй коробки.
Из условия известно, что:
4,5h1=h2
a1=3a2
Найдем отношение объемов:
Подставляем равенства из условия:
Т.е. первая коробка по объему в два раза больше второй.
Ответ: 2
Поделитесь решением
Присоединяйтесь к нам...
На каком расстоянии (в метрах) от фонаря стоит человек ростом 2 м, если длина его тени равна 1 м, высота фонаря 9 м?
Сторона основания правильной треугольной призмы ABCA1B1C1 равна 2, а высота этой призмы равна 4√3. Найдите объём призмы ABCA1B1C1.
Пожарную лестницу длиной 10 м приставили к окну дома. Нижний конец лестницы отстоит от стены на 6 м. На какой высоте расположено окно? Ответ дайте в метрах.
В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра DA, DC и диагональ DA1 боковой грани равны соответственно 3, 5 и √
Два ребра прямоугольного параллелепипеда равны 8 и 5,
а объём параллелепипеда равен 280. Найдите площадь поверхности этого параллелепипеда.
Комментарии: