Сторона основания правильной треугольной призмы ABCA1B1C1 равна 2, а высота этой призмы равна 4√3. Найдите объём призмы ABCA1B1C1.
Объем призмы вычисляется перемножением площади основания призмы на высоту.
Найдем площадь основания.
По
определению правильной призмы, в основании лежит правильный (т.е.
равносторонний) треугольник.
По
пятому свойству равностороннего треугольника:
S=a2√3/4=22√3/4=4√3/4=√3
Зная площадь основания и высоту, вычисляем объем призмы:
V=S*h=√3*4√3=4(√3)2=4*3=12
Ответ: 12
Поделитесь решением
Присоединяйтесь к нам...
В равнобедренном треугольнике ABC боковая сторона AB=25, sinA=3/5. Найдите площадь треугольника ABC.
В окружности с центром O отрезки AC и BD — диаметры. Центральный угол AOD равен 124°. Найдите угол ACB. Ответ дайте в градусах.
Даны два цилиндра. Радиус основания и высота первого цилиндра равны соответственно 2 и 6,
а второго — 6 и 4. Во сколько раз объём второго цилиндра больше объёма первого?
Вода в сосуде цилиндрической формы находится на уровне h= 80 см. На каком уровне окажется вода, если её перелить в другой цилиндрический сосуд, у которого радиус основания вдвое больше, чем у первого? Ответ дайте
в сантиметрах.
Даны две коробки, имеющие форму правильной четырёхугольной призмы, стоящей на основании. Первая коробка
в четыре с половиной раза ниже второй,
а вторая втрое уже первой. Во сколько раз объём первой коробки больше объёма второй?
Комментарии: