Решение какого из данных неравенств изображено на рисунке?
1) x2+1<0
2) x2-1<0
3) x2-1>0
4) x2+1>0
Посмотрим на предложенные неравенства:
- все они квадратичные, т.е. графики этих функций - параболы
- у всех аргумент "а" равен еденице, т.е. больше нуля, следовательно ветви их парабол направлены вверх
- графики парабол 1) и 4) будут совпадать, т.к. это одинаковые функции.
- графики парабол 2) и 3) будут совпадать, т.к. это одинаковые функции.
Посмотрим на рисунок решения неравенства:
- корни квадратичной функции должны быть -1 и 1.
Решим уравнение x2+1=0
x2=-1
Данное уравнение не имеет корней, так как ни какое число в квадрате не будет отрицательным. Следовательно неравенства 1) и 4) не подходят.
Решим уравнение x2-1=0
x2-12=0
(x-1)(x+1)=0
x-1=0 => x1=1
x+1=0 => x2=-1
Посмотрим на рисунок, в условии показаны диапазоны, когда график функции выше оси Х, т.е. больше нуля, следовательно, подходит неравенство x2-1>0
Ответ: 3)
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0 Б) k>0, b<0 В) k<0, b>0
ГРАФИКИ
1)
2)
3)
На координатной прямой отмечено число a.
Какое из утверждений относительно этого числа является верным?
1) 6-a>0
2) 8-a<0
3) a-6<0
4) a-6>0
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
ГРАФИКИ
А)
Б)
В)
КОЭФФИЦИЕНТЫ
1) k<0, b<0
2) k>0, b<0
3) k>0, b>0
На каком из рисунков изображено решение неравенства 6x-x2>0?
1)
2)
3)
4)
На координатной прямой отмечено число a.
Из следующих утверждений выберите верное.
1) (a-6)2>1
2) (a-7)2<1
3) a2<36
4) a2>49
Комментарии: