В геометрической прогрессии сумма первого и второго членов равна 72, а сумма второго и третьего членов равна 144. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=72
b1+b1q=72
b1(1+q)=72
2) b2+b3=144
b1q+b1q2=144
b1(q+q2)=144
b1(q+1)q=144
Подставляем из п. 1)
72q=144 => q=2, тогда b1(1+2)=72 => b1=24
b2=24*2=48
b3=24*22=96
Ответ: b1=24, b2=48, b3=96
Поделитесь решением
Присоединяйтесь к нам...
Дана арифметическая прогрессия: 1; 3; 5; … . Найдите сумму первых шестидесяти её членов.
В геометрической прогрессии сумма первого и второго членов равна 160, а сумма второго и третьего членов равна 40. Найдите первые три члена этой прогрессии.
Записаны первые три члена арифметической прогрессии: -7; -1; 5; … Какое число стоит в этой арифметической прогрессии на 91-м месте?
Выписаны первые несколько членов арифметической прогрессии: -6; -2; 2; … Найдите сумму первых пятидесяти её членов.
Записаны первые три члена арифметической прогрессии: -8; -1; 6. Какое число стоит в этой арифметической прогрессии на 51-м месте?
Комментарии: