Постройте график функции y=-x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
-x+5x-x2, при x≥0
-x+5(-x)-x2, при x<0
4x-x2, при x≥0
-6x-x2, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=4x-x2, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | 3 | 4 | 3 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | -5 | -8 | -9 | -8 |
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции y=2x+4|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(x)>0 при x<-4 и при x>2
3) Наименьшее значение функции равно -9
На рисунках изображены графики функций вида y=kx+b. Установите соответствие между знаками коэффициентов k и b и графиками функций.
КОЭФФИЦИЕНТЫ
А) k<0, b<0
Б) k<0, b>0
В) k>0, b<0
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции y=x2-8x-4|x-3|+15 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.
Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Комментарии: