Постройте график функции y=-x+5|x|-x2 и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
В данной функции присутствуем
модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения
модуля:
-x+5x-x2, при x≥0
-x+5(-x)-x2, при x<0
4x-x2, при x≥0
-6x-x2, при x<0
Рассмотрим и построим график для каждой подфункции и объединим их.
1) y1=4x-x2, при x≥0 (красный график)
X | 0 | 1 | 2 | 3 |
Y | 0 | 3 | 4 | 3 |
X | 0 | -1 | -2 | -3 | -4 |
Y | 0 | -5 | -8 | -9 | -8 |
Поделитесь решением
Присоединяйтесь к нам...
Известно, что графики функций y=x2+p и y=-2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
Установите соответствие между графиками функций и формулами, которые их задают. Впишите в приведённую в ответе таблицу под каждой буквой соответствующую цифру.
ФОРМУЛЫ | Графики | ||
1) y=-x2+7x-14 2) y=x2-7x+14 3) y=x2+7x+14 4) y=-x2-7x-14 |
A)![]() |
Б)![]() |
В)![]() |
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
А)
Б)
В)
ФОРМУЛЫ
1) y=-3x+3
2) y=3x
3) y=3x-3
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображён график функции y=ax2+bx+c. Установите соответствие между утверждениями и промежутками, на которых эти утверждения удовлетворяются.
УТВЕРЖДЕНИЯ | ПРОМЕЖУТКИ |
А) Функция возрастает на промежутке Б) Функция убывает на промежутке | 1) [2;5] 2) [0;1] 3) [-3;-1] 4) [-2;2] |
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) Функция убывает на промежутке [1; +∞)
2) Наименьшее значение функции равно -4
3) ƒ(-2)<ƒ(3)
Комментарии: