Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
Область Допустимых Значений (ОДЗ):
Так как присутствует деление на (х-3), х≠3, так как деление на ноль невозможно.
X | 0 | 1 | 2 | 3 |
Y | 0 | 1 | 4 | 9 |
X | 0 | -1 | -2 |
Y | 0 | -1 | -4 |
Поделитесь решением
Присоединяйтесь к нам...
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k<0, b<0 2) k<0, b>0 3) k>0, b>0 4) k>0, b<0 |
А) ![]() |
Б) ![]() |
В) ![]() |
Постройте график функции и определите, при каких значениях m прямая y=m не имеет с графиком ни одной общей точки.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(x)>0 при x<-4 и при x>2
3) Наименьшее значение функции равно -9
Постройте график функции
-x2, если |x|≤1
-1/x, если |x|>1
и определите, при каких значениях c прямая y=c будет иметь с графиком единственную общую точку.
Постройте график функции
Определите, при каких значениях m прямая y=m не имеет с графиком
ни одной общей точки.
Комментарии: