Найдите p и постройте график функции y=x2+p, если известно, что прямая y=4x имеет с графиком ровно одну общую точку.
Две функции имеют точку пересечения, это означает, что графики обеих функций имеют общую точку. Следовательно, надо составить систему и решить ее:
y=x2+p
y=4x
4x=x2+p
x2-4x+p=0
Найдем корни этого
квадратного уравнения:
D=(-4)2-4*1*p=16-4p
В условии сказано, что точка пересечения только одна, следовательно корень уравнения должен быть только один. Это условие выполняется, когда дискриминант равен нулю:
D=16-4p=0
16=4p
p=4
x=-(-4)/(2*1)=2
y=4x=4*2=8
(2;8) - точка пересечения графиков.
Получаем функцию:
y=x2+4
График функции:
Поделитесь решением
Присоединяйтесь к нам...
Постройте график функции и определите, при каких значениях k прямая y=kx не имеет с графиком ни одной общей точки.
Установите соответствие между графиками функций и формулами, которые их задают.
ГРАФИКИ
A)
Б)
В)
ФОРМУЛЫ
1) y=-10/x
2) y=-1/(10x)
3) y=10/x
В таблице под каждой буквой укажите соответствующий номер.
Постройте график функции
Определите, при каких значениях k прямая y=kx имеет с графиком ровно одну общую точку.
Установите соответствие между функциями и их графиками.
ФУНКЦИИ
А)
Б)
В)
ГРАФИКИ
1)
2)
3)
В таблице под каждой буквой укажите соответствующий номер.
На рисунке изображены графики функций вида y=kx+b. Установите соответствие между графиками функций и знаками коэффициентов k и b.
КОЭФФИЦИЕНТЫ | ГРАФИКИ | ||
1) k>0, b>0 2) k<0, b>0 3) k>0, b<0 4) k<0, b<0 |
А) | Б) | В) |
Комментарии:
(2015-04-09 12:54:47) Администратор: Я добавил строчку в решение, чтобы стало понятно, просто решил уравнение 16-4p=0.
(2015-04-09 12:51:07) : как вы узнали, что р=4?
(2014-05-29 16:42:24) Администратор: Мария, не понял, где подписывать?
(2014-05-29 15:43:56) Мария: графики надо подписывать?