ОГЭ, Математика. Функции: Задача №9E4A68 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Функции: Задача №9E4A68

Задача №72 из 287
Условие задачи:

Постройте график функции y=2|x-5|-x2+11x-30 и определите, при каких значениях m прямая y=m имеет с графиком ровно три общие точки.

Решение задачи:

В данной функции присутствуем модуль, следовательно функцию надо разложить на две подфункции, в зависимости от значения модуля:
2(x-5)-x2+11x-30, при x-5≥0
-2(x-5)-x2+11x-30, при x-5<0
2x-10-x2+11x-30, при x≥5
-2x+10-x2+11x-30, при x<5
-x2+13x-40, при x≥5
-x2+9x-20, при x<5
Теперь построим графики обеих подфункций в определенных для них диапазонах, для этого найдем корни этих подфункций через дискриминант:
1) -x2+13x-40=0
D=132-4(-1)(-40)=169-160=9
x1=(-13+3)/(2(-1))=5
x2=(-13-3)/(2(-1))=8
2) -x2+9x-20=0
D=92-4(-1)*20=81-80=1
x1=(-9+1)/(2(-1))=4
x2=(-9-1)/(2(-1))=5
Так как коэффициент а=-1 (т.е. меньше нуля), значит ветви параболы направлены вниз.
Теперь можем построить график:
Первая подфункция - красная:

X 5 6 7 8 9
Y 0 2 2 0 -4
Вторая подфункция - синяя:
X 5 4 3 2
Y 0 0 -2 -6
Зеленые прямые - это y=m такие, что имеют ровно три общие точки.
Очевидно, что m1=0, а чтобы найти m2 надо найти координату "y" синей подфункции:
x0=-b/(2a)=-9/(2(-1))=4,5
y0=-x02+9x0-20=-4,52+9*4,5-20=-20,25+40,5-20=0,25
Значит m2=0,25
Ответ: m1=0, m2=0,25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №77E21F

Постройте график функции и определите, при каких значениях c прямая y=c будет пересекать построенный график в трёх точках.



Задача №6E11A7

Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.



Задача №65A424

На рисунках изображены графики функций вида y=ax2+bx+c. Установите соответствие между графиками функций и знаками коэффициентов a и c.
ГРАФИКИ
А)      Б)      В)
КОЭФФИЦИЕНТЫ
1) a<0, c>0
2) a>0, c>0
3) a>0, c<0
В таблице под каждой буквой укажите соответствующий номер.



Задача №D607A6

Постройте график функции и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.



Задача №0E651D

На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции являются верными? Запишите их номера.
1) Функция убывает на промежутке [-1;+∞)
2) ƒ(0)>ƒ(1)
3) Наибольшее значение функции равно 8

Комментарии:


(2015-03-31 21:13:20) Администратор: Лена, справедливое замечание. В решение добавлены таблицы координат.
(2015-03-31 17:55:41) Лена : Так как коэффициент а=-1 (т.е. меньше нуля), значит ветви параболы направлены вниз. p.s вот до сюда всё понятно,а дальше,по каким координатам, строим график?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Решение квадратного уравнения с помощью дискриминанта:
Для нахождения корней квадратного уравнения ax2+bx+c=0 в общем случае следует пользоваться приводимым ниже алгоритмом:
1) Вычислить значение дискриминанта квадратного уравнения:
D=b2-4ac
2) Вычислить корни уравнения:
x1,2=(-b±D)/(2a)
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика