Задача №6 из 42 |
Решите уравнение x2=9.
Если уравнение имеет более одного корня, в ответе укажите меньший из них.
x2=9
x2-9=0
Можно это квадратное уравнение решить через дискриминант, но в данном случае легче воспользоваться формулой разность квадратов:
x2-32=0
(x-3)(x+3)=0
Произведение равно нулю, когда один из множителей равно нулю, поэтому рассмотрим два варианта:
1) x-3=0 => x1=3
2) x+3=0 => x2=-3
Наименьший корень - это x2=-3
Ответ: -3
Поделитесь решением
Присоединяйтесь к нам...
Некоторые учащиеся 11-х классов школы ходили в октябре на спектакль «Вишнёвый сад». В декабре некоторые одиннадцатиклассники пойдут
на постановку по пьесе «Три сестры», причём среди них не будет тех, кто ходил в октябре на спектакль «Вишнёвый сад».
Выберите утверждения, которые будут верны при указанных условиях независимо от того, кто из одиннадцатиклассников пойдёт на постановку по пьесе «Три сестры».
1) Нет ни одного одиннадцатиклассника, который ходил на спектакль «Вишнёвый сад» и пойдёт на постановку по пьесе «Три сестры».
2) Каждый учащийся 11-х классов, который не был на спектакле «Вишнёвый сад», пойдёт на постановку по пьесе «Три сестры».
3) Среди учащихся 11-х классов этой школы, которые не пойдут на постановку по пьесе «Три сестры», есть хотя бы один, который ходил на спектакль «Вишнёвый сад».
4) Найдётся одиннадцатиклассник, который не ходил на спектакль «Вишнёвый сад» и не пойдёт на постановку по пьесе «Три сестры».
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.
| ВЕЛИЧИНЫ | ЗНАЧЕНИЯ |
| А) длительность прямого авиаперелёта Москва – Гавана | 1) 14,6 секунды |
| Б) бронзовый норматив ГТО по бегу на 100 м для мальчиков 16–17 лет | 2) 60190 суток |
| В) время одного оборота Нептуна вокруг Солнца | 3) 13 часов |
| Г) длительность эпизода мультипликационного сериала | 4) 22 минуты |
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
А)
|
1)
|
Б)
|
2)
|
| В) (x-3)(x-5)>0 |
3)
|
| Г) log2(x-3)<1 |
4)
|
Каждому из четырёх неравенств в левом столбце соответствует одно
из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| A) 2-x+1<0,5 | 1) (4;+∞) |
| Б) (x-5)2/(x-4)<0 | 2) (2;4) |
| В) log4x>1 | 3) (2;+∞) |
| Г) (x-4)(x-2)<0 | 4) (-∞;4) |
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) 2x≥2 | 1) x≥1 |
| Б) 0,5x≥2 | 2) x≤1 |
| В) 0,5x≤2 | 3) x≤-1 |
| Г) 2x≤2 | 4) x≥-1 |
Комментарии: