Задача №6 из 42 |
Решите уравнение x2=9.
Если уравнение имеет более одного корня, в ответе укажите меньший из них.
x2=9
x2-9=0
Можно это квадратное уравнение решить через дискриминант, но в данном случае легче воспользоваться формулой разность квадратов:
x2-32=0
(x-3)(x+3)=0
Произведение равно нулю, когда один из множителей равно нулю, поэтому рассмотрим два варианта:
1) x-3=0 => x1=3
2) x+3=0 => x2=-3
Наименьший корень - это x2=-3
Ответ: -3
Поделитесь решением
Присоединяйтесь к нам...
Кузнечик прыгает вдоль координатной прямой в любом направлении на единичный отрезок за прыжок, делая первый прыжок из начала координат. Сколько существует различных точек на координатной прямой, в которых кузнечик может оказаться, совершив ровно 8 прыжков?
Найдите корень уравнения √
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
НЕРАВЕНСТВА | РЕШЕНИЯ |
А) 2x≥2 | 1) x≥1 |
Б) 0,5x≥2 | 2) x≤1 |
В) 0,5x≤2 | 3) x≤-1 |
Г) 2x≤2 | 4) x≥-1 |
На координатной прямой отмечено число m и точки A, B, C и D.
Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.
ТОЧКИ | ЧИСЛА |
A | 1) √ |
B | 2) m2 |
C | 3) m-1 |
D | 4) -3/m |
Найдите корень уравнения log3(2x-5)=2.
Комментарии: