Задача №6 из 42 |
Решите уравнение x2=9.
Если уравнение имеет более одного корня, в ответе укажите меньший из них.
x2=9
x2-9=0
Можно это квадратное уравнение решить через дискриминант, но в данном случае легче воспользоваться формулой разность квадратов:
x2-32=0
(x-3)(x+3)=0
Произведение равно нулю, когда один из множителей равно нулю, поэтому рассмотрим два варианта:
1) x-3=0 => x1=3
2) x+3=0 => x2=-3
Наименьший корень - это x2=-3
Ответ: -3
Поделитесь решением
Присоединяйтесь к нам...
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) (x-1)2(x-4)<0 | 1) (-∞; 1)∪(4; +∞) |
Б) ![]() |
2) (1; 4)∪(4; +∞) |
| В) (x-1)(x-4)<0 | 3) (-∞; 1)∪(1; 4) |
Г) ![]() |
4) (1; 4) |
Решите уравнение x2=-2x+24.
Если уравнение имеет более одного корня, в ответе укажите больший из них.
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
| А) (x-1)2(x-4)<0 | 1) (-∞; 1)∪(4; +∞) |
Б) ![]() |
2) (1; 4)∪(4; +∞) |
| В) (x-1)(x-4)<0 | 3) (-∞; 1)∪(1; 4) |
Г) ![]() |
4) (1; 4) |
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
| НЕРАВЕНСТВА | РЕШЕНИЯ |
А)
|
1)
|
Б)
|
2)
|
| В) (x-3)(x-5)>0 |
3)
|
| Г) log2(x-3)<1 |
4)
|
В корзине лежит 40 грибов: рыжики и грузди. Известно, что среди любых 17 грибов имеется хотя бы один рыжик, а среди любых 25 грибов хотя бы один груздь. Сколько рыжиков в корзине?
Комментарии: