Постройте график функции
и определите, при каких значениях m прямая y=m имеет с графиком ровно две общие точки.
Область Допустимых Значений (ОДЗ):
x2-x≠0, т.к. на ноль делить нельзя.
x(x-1)≠0
x1≠0
x2≠1



График функции - парабола, так как коэффициет "а" равен -1, т.е. меньше нуля, то ветви направлены вниз.| X | -2 | -1 | 0 | 1 | 2 |
| Y | 3 | 5 | 5 | 3 | -1 |
Поделитесь решением
Присоединяйтесь к нам...
Известно, что графики функций y=x2+p и y=2x-2 имеют ровно одну общую точку. Определите координаты этой точки. Постройте графики заданных функций в одной системе координат.
На рисунке изображён график квадратичной функции y=ƒ(x).
Какие из следующих утверждений о данной функции неверны? Запишите их номера.
1) ƒ(x)<0 при x<1
2) Наибольшее значение функции равно 3
3) ƒ(0)>ƒ(4)
На рисунке изображены графики функций y=6-x2 и y=5x. Вычислите абсциссу точки B.
Постройте график функции y=x2-5|x|-x и определите, при каких значениях c прямая y=c имеет с графиком ровно три общие точки.
Постройте график функции
и определите, при каких значениях m прямая y=m имеет с графиком ровно одну общую точку.
Комментарии:
(2017-03-17 02:59:14) Администратор: Людмила, спасибо большое, что заметили несоответствие. Я исправил решение.
(2017-03-16 19:24:07) Людмила: Вы выносите за скобку числителя Х^3, а числитель X^4-X^2. Наверное в условии ошибка.