В геометрической прогрессии сумма первого и второго членов равна 144, а сумма второго и третьего членов равна 48. Найдите первые три члена этой прогрессии.
Каждый член
геометрической прогрессии можно выразить через первый член.
bn=b1qn-1
Тогда b2=b1q2-1=b1q
По условию:
1) b1+b2=144
b1+b1q=144
b1(1+q)=144
2) b2+b3=48
b1q+b1q2=48
b1(q+q2)=48
b1(q+1)q=48
Подставляем из п. 1)
144q=48 => q=1/3, тогда b1(1+1/3)=144 => b1=144/(4/3)
b1=144*3/4=108
b2=108*1/3=108/3=36
b3=108*(1/3)2=108/32=12
Ответ: b1=108, b2=36, b3=12
Поделитесь решением
Присоединяйтесь к нам...
(bn) — геометрическая прогрессия, знаменатель прогрессии равен 1/5 , b1=375. Найдите сумму первых 5 её членов.
Фигура составляется из квадратов так, как показано на рисунке: в каждой следующей строке на 4 квадрата больше, чем в предыдущей. Сколько квадратов в 12-й строке?
Дана геометрическая прогрессия (bn), знаменатель которой равен 2, b1=16. Найдите b4.
Выписано несколько последовательных членов геометрической прогрессии:
…; -3; x; -27; -81; …
Найдите x.
Арифметическая прогрессия (an) задана условиями:
a1=43, an+1=an+5.
Найдите сумму первых семи её членов.
Комментарии: