В параллелограмме KLMN точка A — середина стороны LM. Известно, что KA=NA. Докажите, что данный параллелограмм — прямоугольник.
Рассмотрим треугольники KLA и NMA. LA=MA, т.к. точка А - середина LM, AK=AN из условия задачи, LK=MN (по свойству параллелограмма). Соответственно, треугольники KLA и NMA равны (по третьему признаку равенства треугольников).
Из равенства этих треугольников следует, что ∠KLA=∠NMA.
LK||MN (по определению параллелограмма), рассмотрим сторону LM как секущую к этим параллельным сторонам. Тогда получается, что сумма углов KLA и NMA равна 180°, т.к. эти углы являются внутренними односторонними. Отсюда следует, что каждый из этих углов равен 90°.
Рассмотрим треугольник KAN, KA=NA (по условию задачи), соответственно, этот треугольник
равнобедренный. Отсюда следует, что ∠AKN=∠ANK (
из свойства равнобедренного треугольника). Из ранее полученного равенства треугольников, следует, что ∠LKA=∠MNA. Получаем, что углы LKN и MNK равны.
В свою очередь они так же являются внутренними односторонними и их сумма равна 180°. Получается, что и эти углы равны 90° каждый.
Параллелограмм, у которого все углы прямые (т.е. 90°) называется прямоугольником (по определению).
Поделитесь решением
Присоединяйтесь к нам...
Лестница соединяет точки A и B и состоит из 30 ступеней. Высота каждой ступени равна 13 см, а длина – 84 см. Найдите расстояние между точками A и B (в метрах).
На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=15, MD=3, H — точка пересечения высот треугольника ABC. Найдите AH.
В треугольнике ABC известно, что AB=5, BC=7, AC=9. Найдите cos∠ABC.
Найдите меньший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием ВС и боковой стороной CD углы, равные 25° и 100° соответственно.
Боковая сторона трапеции равна 3, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 6.
Комментарии:
(2019-03-31 11:20:50) Администратор: Елена, а как Вы вычислили, что угол KLM прямой?
(2019-03-28 21:01:57) Елена: так как LM II KN (по определению параллелограмма), LK - секущая, то сумма односторонних углов КLM и LKM равна 180 градусам. Значит, угол LKM = 180 - 90 = 90.Угол КNМ находим аналогично.
(2017-03-29 11:10:09) Арина: Спасибо большое!!Вас сайт мне очень помогает.
(2017-03-21 20:47:45) Администратор: Евгений, да, можно и так.
(2017-03-21 08:27:03) Евгений: А нельзя после доказательства равенства углов KLA=NMA=90 сказать,что угол KLA=KNM, а угол NMA=LKN(по свойству параллелограмма) следовательно, угол KNM=LKN=90
(2015-03-21 15:41:45) Анна: прекрасно!!!!!!
(2014-11-28 02:25:10) Балобина Егор: Просто замечательно! Супер!!
(2014-05-30 15:48:44) Администратор: Мария, ну наверно, не совсем все. Здесь много подробных объяснений, которые необязательны, а даны только для понимания хода решения. Но на экзамене обязательно ссылаться на определения, теоремы, аксиомы и т.д.
(2014-05-30 15:26:18) Мария: А если на экзамене эта задача будет это все писать надо?
(2014-05-09 13:44:45) Администратор: В самом начале доказательства, выводится равенство треугольников KLA и NMA, следовательно, равны их соответствующие углы.
(2014-05-09 11:33:05) юлия:: я не поняла /KLA=/NMA.