ОГЭ, Математика. Геометрия: Задача №11F101 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №11F101

Задача №10 из 1087
Условие задачи:

Какие из данных утверждений верны? Запишите их номера.
1) Вокруг любого треугольника можно описать окружность.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Площадь трапеции равна произведению средней линии на высоту.

Решение задачи:

Рассмотрим каждое утверждение.
1) Есть теорема об окружности, описанной около треугольника. Т.е. утверждение верно.
2) По свойству квадрата это утверждение верно.
3) Площадь трапеции равна произведению средней линии на высоту. Это утверждение тоже верно.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5C5771

Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 12 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 9 м. Найдите длину троса.



Задача №7CF591

В параллелограмме KLMN точка E — середина стороны LM. Известно, что EK=EN. Докажите, что данный параллелограмм — прямоугольник.



Задача №43740F

Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №22FD03

В треугольнике ABC угол C равен 90°, BC=5, AC=3.
Найдите tgB.



Задача №AB62A7

В треугольнике ABC угол C прямой, BC=8, cosB=0,8. Найдите AB.

Комментарии:


(2017-04-16 14:12:05) Троишник: СПАСИБ!!!!!!
(2016-02-03 13:23:08) : :-)
(2015-12-17 10:05:01) : КЛАСС
(2015-12-06 12:50:43) Пятерка: :*
(2015-12-06 12:50:24) Ангелочек: СУПЕР!!!:)))

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Теорема об окружности, описанной около треугольника.
Около любого треугольника можно описать окружность.
Центр описанной окружности выпуклого n-угольника (а треугольник таковым и является) лежит в точке пересечения серединных перпендикуляров к его сторонам. Как следствие: если рядом с n-угольником описана окружность, то все серединные перпендикуляры к его сторонам пересекаются в одной точке (центре окружности). Центр описанной окружности.
1) У остроугольного треугольника центр описанной окружности лежит внутри
2) У тупоугольного — вне треугольника
3) У прямоугольного — на середине гипотенузы.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика