На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.
Проведем диагонали ромба.
Диагонали делят ромб на 4 треугольника.
Эти треугольники прямоугольные, так как диагонали пересекаются под прямым углом (по
свойству ромба).
Учитывая второе свойство ромба, получается что у треугольников равны соответственные стороны.
Тогда, эти треугольники равны, по
третьему признаку равенства.
Площадь прямоугольного треугольника:
S=ab/2, где а и b - катеты треугольника.
S=1*4/2=2
Sромб=4S=4*2=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Диагональ прямоугольника образует угол 50° с одной из его сторон. Найдите угол между диагоналями этого прямоугольника. Ответ дайте в градусах.
В треугольнике ABC угол C равен 90°, AC=10, tgA=0,1. Найдите BC.
Сторона квадрата равна 6√3. Найдите площадь этого квадрата.
Точка H является основанием высоты, проведённой из вершины прямого угла B треугольника ABC к гипотенузе AC. Найдите AB, если AH=6, AC=24.
В треугольнике ABC угол C равен 90°, BC=3, AB=5. Найдите cosB.
Комментарии: