Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

Решение задачи:

Проведем диагонали ромба.
Диагонали делят ромб на 4 треугольника.
Эти треугольники прямоугольные, так как диагонали пересекаются под прямым углом (по свойству ромба).
Учитывая второе свойство ромба, получается что у треугольников равны соответственные стороны.
Тогда, эти треугольники равны, по третьему признаку равенства.
Площадь прямоугольного треугольника:
S=ab/2, где а и b - катеты треугольника.
S=1*4/2=2
Sромб=4S=4*2=8
Ответ: 8

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №09F434

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=6, AC=54. Найдите AK.

Задача №F77008

Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.

Задача №CC1B07

Какие из следующих утверждений верны?
1) Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
2) Диагонали ромба равны.
3) Тангенс любого острого угла меньше единицы.

Задача №53F638

Укажите номера верных утверждений.
1) Любой квадрат является ромбом.
2) Против равных сторон треугольника лежат равные углы.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.

Задача №32C056

Из квадрата вырезали прямоугольник (см. рисунок). Найдите площадь получившейся фигуры.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика