На клетчатой бумаге с размером клетки 1x1 изображён ромб. Найдите площадь этого ромба.
Проведем диагонали ромба.
Диагонали делят ромб на 4 треугольника.
Эти треугольники прямоугольные, так как диагонали пересекаются под прямым углом (по
свойству ромба).
Учитывая второе свойство ромба, получается что у треугольников равны соответственные стороны.
Тогда, эти треугольники равны, по
третьему признаку равенства.
Площадь прямоугольного треугольника:
S=ab/2, где а и b - катеты треугольника.
S=1*4/2=2
Sромб=4S=4*2=8
Ответ: 8
Поделитесь решением
Присоединяйтесь к нам...
Высота равностороннего треугольника равна 15√
Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.
В параллелограмме KLMN точка A — середина стороны KN. Известно, что AL=AM. Докажите, что данный параллелограмм — прямоугольник.
Найдите площадь трапеции, изображённой на рисунке.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии: