Найдите тангенс угла AOB, изображённого на рисунке.
В данной задаче надо просто дорисовать угол до прямоугольного треугольника. При этом длину сторон угла можно выбрать по своему усмотрению, поэтому выберем так, чтобы стороны составляли целое число клеточек.
Тогда по определению тангенса:
tg∠BOC=BC/OC=2/4=0,5
Ответ: 0,5
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C равен 90°, AC=6, AB=10. Найдите sinB.
Основания равнобедренной трапеции равны 16 и 96, боковая сторона равна 58. Найдите длину диагонали трапеции.
В окружности с центром в точке О проведены диаметры AD и BC, угол ABO равен 75°. Найдите величину угла ODC.
Высоты остроугольного треугольника ABC, проведённые из точек B и C, продолжили до пересечения с описанной окружностью в точках B1 и C1. Оказалось, что отрезок B1C1 проходит через центр описанной окружности. Найдите угол BAC.
В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC.
Комментарии: