Точка H является основанием высоты BH, проведенной из вершины прямого угла B прямоугольного треугольника ABC. Окружность с диаметром BH пересекает стороны AB и CB в точках P и K соответственно. Найдите BH, если PK=14.
Проведем отрезки KH и HP.
Треугольники BKH и BPH являются
вписанными в данную окружность. А т.к. центр этой окружности располагается на середине их стороны BH, то это означает, что эти треугольники прямоугольные с гипотенузой BH (по
свойству описанной окружности).
Следовательно, /HKB и /HPB - прямые.
Рассмотрим четырехугольник BKHP, сумма углов любого четырехугольника равна 360°, следовательно /HKB+/KBP+/HPB+/PHK=360°
90°+90°+90°+/PHK=360°
/PHK=90°
То есть получается, что четырехугольник BKHP является
прямоугольником. Диагонали этого прямоугольника BH и PK.
PK=BH=14 (по свойству
прямоугольника)
Ответ: BH=14
Поделитесь решением
Присоединяйтесь к нам...
От столба к дому натянут провод длиной 17 м, который закреплён на стене дома на высоте 4 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 15 м.
Найдите площадь прямоугольного треугольника, если его катет и гипотенуза равны соответственно 40 и 85.
Найдите тангенс угла А треугольника ABC, изображённого на рисунке.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=21 и HD=54. Найдите площадь ромба.
В параллелограмме ABCD диагонали AC и BD пересекаются в точке K. Докажите, что площадь параллелограмма ABCD в четыре раза больше площади треугольника AKB.
Комментарии: