Юмор

Автор: Таська
Так выглядит современная программа обучения.
Решите задачу: летят по небу два верблюд...читать далее

ОГЭ, Математика.
Геометрия: Задача №8EAAA5

Задача №57 из 1084
Условие задачи:

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Решение задачи:

BM - медиана треугольника АВС, следовательно, она делит этот треугольник на два равных по площади треугольника ( свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP - биссектриса, по теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC втрое больше AB, следовательно, AM в 1,5 раза больше АВ (т.к. является половиной АС)
KM/BK=1,5. Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота, то можем записать:
SAKM=1/2*h*KM=1/2*h*(1,5*BK),
SAKM=1/2*h*(3/2*BK)=3/2*(1/2*h*BK)=3/2*SABK (т.к. высота h для этих треугольников общая)
SABK+SAKM=SABM=SABC/2
SABK+3/2*SABK=SABC/2
5/2*SABK=SABC/2
SABK=SABC/5
По тому же свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=3 (по условию задачи), следовательно, CP=3*PB
SAPC=1/2*h*PC=1/2*h*(3*PB)=3*(1/2*h*PB)=3*SABP,
SABP+SAPC=SABC
SABP+3*SABP=SABC
SABP=SABC/4
Далее найдем площадь треугольника BPK:
SBPK=SABP-SABK
Ранее мы нашли, что SABK=SABC/5
SBPK=SABC/4-SABC/5=SABC/20
Найдем площадь четырехугольника KPCM:
SKPCM=SCMB-SBKP
SKPCM=SABC/2-SABC/20, (площадь CMB мы нашли ранее),
SKPCM=9/20*SABC
Отношение площадей ABK к KPCM =(SABC/5)/(9/20*SABC)=4/9
Ответ: отношение площади треугольника ABK к площади четырёхугольника KPCM=4/9.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №A77AB8

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.

Задача №4BD96F

Косинус острого угла А треугольника равен . Найдите sinA.

Задача №92C757

Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой накрест лежащие углы равны, то прямые параллельны.
2) Диагональ трапеции делит её на два равных треугольника.
3) Если в ромбе один из углов равен 90°, то такой ромб — квадрат.

Задача №F77008

Укажите номера верных утверждений.
1) Существует прямоугольник, который не является параллелограммом.
2) Треугольник с углами 40° , 70°, 70° — равнобедренный.
3) Если из точки M проведены две касательные к окружности и А и В — точки касания, то отрезки MA и MB равны.

Задача №EE59B5

Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы BB1C1 и BCC1 равны.

Комментарии:


(2015-03-09 16:04:39) Администратор: Виталий, 1+(3/2)=(2/2)+(3/2)=5/2.
(2015-03-06 19:24:21) Виталий: SABK+SAKM=SABM=SABC/2 SABK+3/2*SABK=SABC/2 5/2*SABK=SABC/2 SABK=SABC/5 Почему 52????
(2014-05-29 21:04:23) Администратор: Мария, как повезет )
(2014-05-29 20:00:54) Мария: сложная...неужели она будет на экзамене?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика