Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K,
длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.
BM -
медиана треугольника АВС,
следовательно, она делит этот треугольник на два равных по площади треугольника (
свойство медианы).
SABM=SCMB=SABC/2
Рассмотрим треугольник ABM.
SABK+SAKM=SABM=SABC/2
AP -
биссектриса, по
теореме о биссектрисе можно записать AM/AB=KM/BK.
По условию задачи AC втрое больше AB, следовательно, AM в 1,5 раза больше АВ (т.к. является половиной АС)
KM/BK=1,5. Т.к. площадь треугольника вычисляется по формуле S=1/2*h*a, где а-основание и h-высота,
то можем записать:
SAKM=1/2*h*KM=1/2*h*(1,5*BK),
SAKM=1/2*h*(3/2*BK)=3/2*(1/2*h*BK)=3/2*SABK (т.к. высота h для этих треугольников общая)
SABK+SAKM=SABM=SABC/2
SABK+3/2*SABK=SABC/2
5/2*SABK=SABC/2
SABK=SABC/5
По тому же
свойству биссектрисы для треугольника ABC получаем, что AC/AB=CP/PB
AC/AB=3 (по условию задачи), следовательно, CP=3*PB
SAPC=1/2*h*PC=1/2*h*(3*PB)=3*(1/2*h*PB)=3*SABP,
SABP+SAPC=SABC
SABP+3*SABP=SABC
SABP=SABC/4
Далее найдем площадь треугольника BPK:
SBPK=SABP-SABK
Ранее мы нашли, что SABK=SABC/5
SBPK=SABC/4-SABC/5=SABC/20
Найдем площадь четырехугольника KPCM:
SKPCM=SCMB-SBKP
SKPCM=SABC/2-SABC/20, (площадь CMB мы нашли ранее),
SKPCM=9/20*SABC
Отношение площадей ABK к KPCM =(SABC/5)/(9/20*SABC)=4/9
Ответ: отношение площади треугольника ABK к площади четырёхугольника KPCM=4/9.
Поделитесь решением
Присоединяйтесь к нам...
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
В треугольнике ABC отмечены середины M и N сторон BC и AC соответственно. Площадь треугольника CNM равна 8. Найдите площадь четырёхугольника ABMN.
Какие из данных утверждений верны? Запишите их номера.
1) Если при пересечении двух прямых третьей прямой внутренние накрест лежащие углы равны 90°, то эти две прямые параллельны.
2) В любой четырёхугольник можно вписать окружность.
3) Центром окружности, описанной около треугольника, является точка пересечения серединных перпендикуляров к сторонам треугольника.
Основания BC и AD трапеции ABCD равны соответственно 5 и 20, BD=10. Докажите, что треугольники CBD и BDA подобны.
На рисунке изображён колодец с «журавлём». Короткое плечо имеет длину 2 м, а длинное плечо — 4 м. На сколько метров опустится конец длинного плеча, когда конец короткого поднимется на 0,5 м?
Комментарии:
(2015-03-09 16:04:39) Администратор: Виталий, 1+(3/2)=(2/2)+(3/2)=5/2.
(2015-03-06 19:24:21) Виталий: SABK+SAKM=SABM=SABC/2 SABK+3/2*SABK=SABC/2 5/2*SABK=SABC/2 SABK=SABC/5 Почему 52????
(2014-05-29 21:04:23) Администратор: Мария, как повезет )
(2014-05-29 20:00:54) Мария: сложная...неужели она будет на экзамене?