Площадь параллелограмма ABCD равна 6. Точка E – середина стороны AB. Найдите площадь трапеции EBCD.
Вариант №1
Проведем высоту
параллелограмма BO, как показано на рисунке. Площадь параллелограмма равна произведению стороны на высоту
параллелограмма.
Sпараллелограмма=CD*h=6
А площадь
трапеции равна произведению полусуммы оснований на высоту.
Sтрапеции=h*(EB+CD)/2.
EB=AB/2 (по условию задачи).
AB=CD (по
свойству параллелограмма).
Следовательно EB=CD/2.
Тогда Sтрапеции=h*(CD/2+CD)/2 = h*(3*CD/2)/2 = h*3*CD/4=h*CD*3/4 = Sпарал-ма*3/4=6*3/4=4,5.
Ответ: 4,5
Проведем отрезки как показано на рисунке.Поделитесь решением
Присоединяйтесь к нам...
В равностороннем треугольнике ABC точки M, N, K — середины сторон АВ, ВС, СА соответственно. Докажите, что АMNK — ромб.
Какие из следующих утверждений верны?
1) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.
2) Площадь трапеции равна произведению основания трапеции на высоту.
3) Треугольника со сторонами 1, 2, 4 не существует.
В ответ запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
В окружности с центром в точке О проведены диаметры AD и BC, угол OAB равен 25°. Найдите величину угла OCD.
Высота равностороннего треугольника равна
15√
В параллелограмме ABCD проведена диагональ AC. Точка O является центром окружности, вписанной в треугольник ABC. Расстояния от точки O до точки A и прямых AD и AC соответственно равны 5, 4 и 3. Найдите площадь параллелограмма ABCD.
Комментарии:
(2017-05-28 22:46:35) Администратор: Alissa, отличное решение, спасибо!
(2017-05-20 12:39:40) Alissa: Можно доказать, что площадь параллелограмма состоит из 4х равновеликих треугольников. Поэтому, площадь треугольника ADE составляет 1/4 площади параллелограмма. Тогда площадь трапеции ЕВСD составляет 3/4 площади параллелограмма .S=3/4*6=4,5 .Ответ:4,5
(2017-03-04 11:23:10) Ляля: Спасибо,всё очень понятно и просто!