ОГЭ, Математика. Геометрия: Задача №0920BE | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0920BE

Задача №747 из 1087
Условие задачи:

Найдите больший угол равнобедренной трапеции ABCD, если диагональ AC образует с основанием AD и боковой стороной AB углы, равные 46° и 35° соответственно. Ответ дайте в градусах.

Решение задачи:

По свойству равнобедренной трапеции - углы при основании равны.
Тогда ∠ADC=46°+35°=81°.
Сумма углов четырехугольника равна 360°, тогда получаем, что:
360°=81°+81°+∠DCB+∠CBA,
∠DCB+∠CBA=360°-81°-81°=198°, а учитывая, что ∠DCB=∠CBA (по тому свойству равнобедренной трапеции), получаем ∠DCB=∠CBA=198°/2=99°, эти углы и есть бОльшие в трапеции
Ответ: 99

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №B93B11

Какие из данных утверждений верны? Запишите их номера.
1) На плоскости существует единственная точка, равноудалённая от концов отрезка.
2) Центром вписанной в треугольник окружности является точка пересечения его биссектрис.
3) Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и углу другого прямоугольного треугольника, то такие треугольники равны.



Задача №0B012C

Около трапеции, один из углов которой равен 49°, описана окружность. Найдите остальные углы трапеции.



Задача №7ABB40

Из точки А проведены две касательные к окружности с центром в точке О. Найдите радиус окружности, если угол между касательными равен 60°, а расстояние от точки А до точки О равно 6.



Задача №176EA1

Прямая касается окружности в точке K. Точка O – центр окружности. Хорда KM образует с касательной угол, равный 84°. Найдите величину угла OMK. Ответ дайте в градусах.



Задача №E5BAE8

Через середину K медианы BM треугольника ABC и вершину A проведена прямая, пересекающая сторону BC в точке P. Найдите отношение площади треугольника ABK к площади четырёхугольника KPCM.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика