ОГЭ, Математика. Геометрия: Задача №09A5AF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

Решение задачи:

Проведем отрезок ОВ.
Отрезок OB - это радиус окружности и этот отрезок перпендикулярен AB (по свойству касательной).
Следовательно, треугольник AOB - прямоугольный, тогда, по теореме Пифагора:
AO2=AB2+OB2
852=402+OB2
7225=1600+OB2
OB2=5625
OB=75=R
Ответ: 75

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №53F638

Укажите номера верных утверждений.
1) Любой квадрат является ромбом.
2) Против равных сторон треугольника лежат равные углы.
3) Через любую точку, лежащую вне окружности, можно провести две касательные к этой окружности.



Задача №3B7CF6

От столба к дому натянут провод длиной 10 м, который закреплён на стене дома на высоте 3 м от земли (см. рисунок). Вычислите высоту столба, если расстояние от дома до столба равно 8 м. Ответ дайте в метрах.



Задача №D677AE

Основание AC равнобедренного треугольника ABC равно 8. Окружность радиуса 5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №9C2C49

Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.



Задача №08FD08

В треугольнике ABC угол C равен 90°, tgB=3/4, BC=12. Найдите AC.

Комментарии:


(2019-05-05 11:40:38) Администратор: Коля, Вы имеете ввиду написать само слово \"Дано\"?
(2019-05-05 10:35:58) коля : напишите пожалуста дано спасибо

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика