Юмор

Автор: страдалец
-Еле-еле отмыла вашу сковороду. Что там такое жирное было?
-Эээ… Тефлоновое покрытие....читать далее

ОГЭ, Математика.
Геометрия: Задача №0E3274

Задача №592 из 1055
Условие задачи:

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 92. Найдите стороны треугольника ABC.

Решение задачи:

Рассмотрим треугольник ABD.
BO перпендикулярен AD (по условию задачи), т.е. ∠BOD=∠BOA=90°.
∠ABO=∠DBO (т.к. BE - биссектриса).
Получается, что треугольники ABO и DBO равны (по второму признаку равенства треугольников).
Следовательно, AB=BD.
Т.е. треугольник ABD - равнобедренный.
BO - биссектриса этого треугольника, следовательно и медиана, и высота (по третьему свойству равнобедренного треугольника).
Следовательно, AO=OD=AD/2=92/2=46.
Проведем отрезок ED и рассмотрим треугольник BEC.
ED - медиана этого треугольника, так как делит сторону BC пополам.
Площади треугольников EDC и EDB равны (по второму свойству медианы). SEDC=SEDB=(BE*OD)/2=(92*46)/2=46*46=2116
SABE=(BE*AO)/2=(92*46)/2=2116
Т.е. SABE=SEDC=SEDB=2116
Тогда, SABС=3*2116=6348
AD - медиана треугольника ABC (по условию), следовательно делит треугольник на два равных по площади треугольника ABD и ACD (по второму свойству медианы).
SABD=(AD*BO)/2=SABC/2
(92*BO)/2=6348/2
BO=6348/92=69
Рассмотрим треугольник ABO, он прямоугольный, тогда применим теорему Пифагора:
AB2=BO2+AO2
AB2=692+462
AB2=4761+2116=6877
AB=6877= 13*529=2313
BC=2AB=2*2313=4613
Рассмотрим треугольник AOE.
OE=BE-BO=92-69=23
Так как этот треугольник тоже прямоугольный, то можно применить теорему Пифагора:
AE2=AO2+OE2
AE2=462+232=2116+529=2645
AE=2645=529*5=235
Так как BE - биссектриса, то используя ее первое свойство запишем:
BC/AB=CE/AE
4613/2313=CE/(235)
2=CE/(235)
CE=465
AC=AE+CE=235+465=695
Ответ: AB=2313, BC=4613, AC=695

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №3A541C

Площадь прямоугольного треугольника равна 323/3. Один из острых углов равен 60°. Найдите длину катета, лежащего напротив этого угла.

Задача №4A4F32

Радиус окружности, вписанной в трапецию, равен 24. Найдите высоту этой трапеции.

Задача №9A65C7

В трапеции ABCD боковая сторона AB перпендикулярна основанию BC. Окружность проходит через точки C и D и касается прямой AB в точке E. Найдите расстояние от точки E до прямой CD, если AD=14, BC=12.

Задача №5D6B72

Сторона ромба равна 9, а расстояние от центра ромба до неё равно 1. Найдите площадь ромба.

Задача №D97D85

Найдите площадь параллелограмма, изображённого на рисунке.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика