ОГЭ, Математика. Геометрия: Задача №0E2331 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0E2331

Задача №591 из 1087
Условие задачи:

На стороне BC остроугольного треугольника ABC (AB≠AC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=32, MD=8, H — точка пересечения высот треугольника ABC. Найдите AH.

Решение задачи:

Проведем отрезки CM и MB.
∠BMC является вписанным в окружность и опирается на дугу в 180° (так как BC - диаметр окружности).
Следовательно, ∠BMC=90° (по теореме о вписанном угле).
Получается, что треугольник MBC - прямоугольный.
Рассмотрим треугольники MBC и MBD.
∠BMC=∠BDM=90°
∠MBD - общий.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Рассмотрим треугольники MBC и MDС.
∠BMC=∠MDC=90°
∠MCD - общий.
Следовательно, данные треугольники подобны (по первому признаку подобия).
Значит треугольник MBD подобен треугольнику MDС.
Тогда: MD/BD=CD/MD
MD2=CD*BD
82=CD*BD
64=CD*BD
Вернемся к первоначальному рисунку и рассмотрим треугольники AHE и BHD.
∠AEH=∠BDH=90°
∠AHE=∠BHD (так как это вертикальные углы).
Следовательно, используя теорему о сумме углов треугольника, получаем, что ∠HAE=∠HBD.
Рассмотрим треугольники ADC и BDH.
∠HAE=∠HBD (как мы уже выяснили).
∠ADC=∠BDH=90°
Следовательно, данные треугольники подобны (по первому признаку подобия).
Тогда:
AD/BD=DC/DH
AD*DH=BD*DC=64 (см. выше).
DH=64/AD=64/32=2
AH=AD-DH=32-2=30
Ответ: AH=30

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №5989C4

Какие из данных утверждений верны? Запишите их номера.
1) Через две различные точки на плоскости проходит единственная прямая.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) У равностороннего треугольника три оси симметрии.



Задача №A3FFD2

Через точку A, лежащую вне окружности, проведены две прямые. Одна прямая касается окружности в точке K. Другая прямая пересекает окружность в точках B и C, причём AB=4, AC=64. Найдите AK.



Задача №2E5DC3

Проектор полностью освещает экран A высотой 80 см, расположенный на расстоянии 250 см от проектора. На каком наименьшем расстоянии (в сантиметрах) от проектора нужно расположить экран B высотой 160 см, чтобы он был полностью освещён, если настройки проектора остаются неизменными?



Задача №F6FBB5

Синус острого угла A треугольника ABC равен . Найдите CosA.



Задача №A77AB8

В выпуклом четырёхугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырёхугольника NPQM можно описать окружность, PQ=44, SQ=16.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика