ОГЭ, Математика. Геометрия: Задача №168D05 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №168D05

Задача №590 из 1087
Условие задачи:

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=11 и MB=16. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.

Решение задачи:

Рассмотрим треугольники ADC и CBD.
∠DCA=∠CBA (т.к. ∠DCA равен половине градусной меры дуги CA по четвертому свойству углов, связанных с окружностью, и на эту же дугу опирается вписанный угол CBA, который тоже равен половине градусной меры дуги, на которую опирается по теореме).
∠CDB - общий для обоих треугольников, следовательно, по признаку подобия, треугольники ADC и CBD - подобны.
Следовательно, по определению подобных треугольников запишем:
CD/BD=AC/BC=AD/CD
AC/BC=AM/MB=11/16 (по первому свойству биссектрисы).
Из этих равенств выписываем:
AD=CD*11/16
BD=CD*16/11, (BD=AD+AB=AD+16+11=AD+27)
AD+27=CD*16/11
CD*11/16+27=CD*16/11
27=CD*16/11-CD*11/16
27=(16*16*CD-11*11*CD)/176
27*176=CD(256-121)
CD=4752/135=35,2
Ответ: CD=35,2

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №F5F3C4

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 9 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №7F81F4

Точка крепления троса, удерживающего флагшток в вертикальном положении, находится на высоте 15 м от земли. Расстояние от основания флагштока до места крепления троса на земле равно 8 м. Найдите длину троса. Ответ дайте в метрах.



Задача №C2B171

Стороны AC, AB, BC треугольника ABC равны 25, 7 и 2 соответственно. Точка K расположена вне треугольника ABC, причём отрезок KC пересекает сторону AB в точке, отличной от B. Известно, что треугольник с вершинами K, A и C подобен исходному. Найдите косинус угла AKC, если /KAC>90°.



Задача №C396A2

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 4, тангенс угла BAC равен 0,75. Найдите радиус вписанной окружности треугольника ABC.



Задача №5436CD

В окружности с центром в точке О проведены диаметры AD и BC, угол OCD равен 30°. Найдите величину угла OAB.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика