Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен
30°. Найдите площадь трапеции, если её основания равны 2 и 5.
Площадь
трапеции вычисляется по формуле , где a и b - основания трапеции,
а h - высота трапеции. Обозначим углы трапеции A, B, C и D. И проведем высоту из угла B к основанию AD, как паказано на рисунке.
Получившийся треугольник ABP -
прямоугольный c катетами BP и AP. Заметим, что BP - это катет притиволежащий углу в 30°, следовательно он равен половине
гипотенузы (
по свойству прямоугольного треугольника), h=4/2=2. Используя формулу площади трапеции получаем S=(2+5)*2/2.
Вычисляем S=7.
Ответ: S=7.
Поделитесь решением
Присоединяйтесь к нам...
В треугольнике ABC угол C прямой, BC=6, cosB=0,3. Найдите AB.
В равнобедренной трапеции известны высота, меньшее основание и угол при основании. Найдите большее основание.
Хорды AC и BD окружности пересекаются в точке P, BP=12, CP=15, DP=25. Найдите AP.
Площадь круга равна 90. Найдите площадь сектора этого круга, центральный угол которого равен 60°.
Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.
Комментарии:
(2015-05-25 18:11:21) Lina: Огромное спасибо
(2015-05-21 18:06:36) Динар: Спасибо
(2015-05-16 09:40:34) : SPS
(2015-03-21 16:07:42) Анна: замечательно!!!!