В основании прямой призмы лежит прямоугольный треугольник, один из катетов которого равен 3,
а гипотенуза равна √
Объем прямой призмы равен произведению площади основания и высоты.
Высота известна, найдем площадь основания.
Площадь прямоугольного треугольника равна половине произведения катетов.
По теореме Пифагора найдем второй катет (обозначим его длину как x):
(√
34=9+x2
x2=34-9=25
x=5
Sоснования=3*5/2=15/2=7,5
V=7,5*6=45
Ответ: 45
Поделитесь решением
Присоединяйтесь к нам...
Два ребра прямоугольного параллелепипеда равны 8 и 5,
а объём параллелепипеда равен 280. Найдите площадь поверхности этого параллелепипеда.
В треугольнике ABC известно, что AB=BC=15, AC=24. Найдите длину медианы BM.
В равнобедренном треугольнике ABC основание AC равно 40, площадь треугольника равна 300. Найдите длину боковой стороны AB.
В треугольнике ABC угол B равен 120°. Медиана BM делит угол B пополам и равна 27. Найдите длину стороны AB.
В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра DA, DC и диагональ DA1 боковой грани равны соответственно 3, 5 и √
Комментарии: