ОГЭ, Математика. Геометрия: Задача №0BB6AA | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №0BB6AA

Задача №30 из 1087
Условие задачи:

Из точки А проведены две касательные к окружности с центром в точке О. Найдите расстояние от точки А до точки О, если угол между касательными равен 60°, а радиус окружности равен 8.

Решение задачи:

Проведем отрезок АО.
Обозначим одну из точек касания окружности и касательной как Р.
Проведем отрезок ОР.
ОР является радиусом и перпендикуляром к касательной АР (по свойству касательной).
Рассмотрим треугольник АОР.
Данный треугольник является прямоугольным,т.к. ОР перпендикулярен АР.
АО является биссектрисой угла, образованного касательными (свойство касательных прямых). Следовательно, угол РАО равен половине данного угла, т.е. 30°.
sinPAO=OP/AO (по определению синуса).
sin30°=8/AO
1/2=8/AO (по таблице синусов)
1=2*8/AO
AO=16
Ответ: 16

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №095900

Диагональ BD параллелограмма ABCD образует с его сторонами углы, равные 65° и 80°. Найдите меньший угол параллелограмма.



Задача №C396A2

Из вершины прямого угла C треугольника ABC проведена высота CP. Радиус окружности, вписанной в треугольник ACP, равен 4, тангенс угла BAC равен 0,75. Найдите радиус вписанной окружности треугольника ABC.



Задача №83290A

Найдите больший угол равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной АВ углы, равные 30° и 45° соответственно. Ответ дайте в градусах.



Задача №B56899

Какие из данных утверждений верны? Запишите их номера.
1) У равнобедренного треугольника есть ось симметрии.
2) Если в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм — квадрат.
3) Две окружности пересекаются, если радиус одной окружности больше радиуса другой окружности.



Задача №3433A9

Высота равнобедренной трапеции, проведённая из вершины C, делит основание AD на отрезки длиной 1 и 5. Найдите длину основания BC.

Комментарии:


(2019-01-26 16:56:06) Администратор: Данила, я расписал решение немного подробней, надеюсь, стало понятней. Если нет, пишите.
(2019-01-25 16:13:14) Данила: И почему мы взяли именно значение синуса?
(2019-01-25 15:51:47) Данила: Откуда взято 2?
(2016-12-05 22:33:33) Администратор: катя, посмотрите задачу 101 из раздела "Статистика и теория вероятностей", очень похожа на Вашу.
(2016-12-05 17:26:10) катя: В среднем на 50 карманных фонариков, поступивших в продажу, приходится восемь неисправных. Найдите вероятность того, что выбранный наудачу в магазине фонарик окажется исправен

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Синус, косинус, тангенс и котангенс угла прямоугольного треугольника.

Синус равен отношению противолежащего катета к гипотенузе.
Sin α =
Косинус равен отношению прилежащего катета к гипотенузе.
Cos α =
Тангенс равен отношению противолежащего катета к прилежащему.
Tg α =
Котангенс равен отношению прилежащего катета к противолежащему.
Ctg α =
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика