ЕГЭ, Математика (базовый уровень). Геометрия: Задача №74BD4A | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ЕГЭ, Математика (базовый уровень).
Геометрия: Задача №74BD4A

Задача №36 из 46
Условие задачи:

В равнобедренном треугольнике ABC основание AC равно 40, площадь треугольника равна 300. Найдите длину боковой стороны AB.

Решение задачи:

Проведем высоту к основанию треугольника.
Площадь треугольника:
S=(1/2)AC*h
300=(1/2)40*h
300=(40/2)*h
300=20h
h=15=BD
Так как h - высота, то треугольник ABD - прямоугольный.
Тогда мы можем воспользоваться теоремой Пифагора:
AB2=BD2+AD2
Но нам неизвестна AD.
По третьему свойству равнобедренного треугольника, высота является так же и медианой, следовательно:
AD=AC/2=40/2=20
Подставляем значения в теорему Пифагора:
AB2=152+202
AB2=225+400=625
AB=√625=25
Ответ: 25

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №EA9E47

В трапеции ABCD известно, что AB=CD, ∠BDA=40° и ∠BDC=30°. Найдите угол ABD. Ответ дайте в градусах.



Задача №206B46

В треугольнике ABC проведена биссектриса AL, угол ALC равен 145°, угол ABC равен 113°. Найдите угол ACB. Ответ дайте в градусах.



Задача №4E4948

На стороне BC прямоугольника ABCD, у которого AB=12 и AD=17, отмечена точка E так, что треугольник ABE равнобедренный. Найдите ED.



Задача №C1234A

В прямоугольном параллелепипеде ABCDA1B1C1D1 рёбра DA, DC и диагональ DA1 боковой грани равны соответственно 3, 5 и 34. Найдите объём параллелепипеда ABCDA1B1C1D1.



Задача №255A4D

В равнобедренном треугольнике ABC боковая сторона AB=25, sinA=3/5. Найдите площадь треугольника ABC.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X Площадь треугольника
1. Через основание и высоту.


где S - площадь треугольника, h - высота треугольника, a - сторона треугольника, к которой проведена высота.
2. Через две стороны и угол между ними.


где S - площадь треугольника, a - одна из сторон треугольника, b - другая сторона треугольника, α - угол между этими сторонами.
3. Формула Герона.

S=√p(p-a)(p-b)(p-c)
где S - площадь треугольника, a, b и c - стороны треугольника, p - полупериметр: p=(a+b+c)/2.
4. Через радиус вписанной окружности.

S=pr
где S - площадь треугольника, a, b и c - стороны треугольника, r - радиус вписанной окружности, p - полупериметр: p=(a+b+c)/2.
5. Через радиус описанной окружности.


где S - площадь треугольника, a, b и c - стороны треугольника, R - радиус описанной окружности.
X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика