Задача №42 из 42 |
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
НЕРАВЕНСТВА | РЕШЕНИЯ |
А) (x-1)2(x-4)<0 | 1) (-∞; 1)∪(4; +∞) |
Б) ![]() |
2) (1; 4)∪(4; +∞) |
В) (x-1)(x-4)<0 | 3) (-∞; 1)∪(1; 4) |
Г) ![]() |
4) (1; 4) |
Для начала посмотрим на все неравенства:
Во-первых, они строгие.
Во-вторых, они все представляют из себя либо произведение скобок, либо деление.
Следовательно, мы можем записать Область Допустимых Значений (ОДЗ) для всех неравенств сразу:
x≠1 (так как в неравенствах А),Б) и В) левая часть становится равна нулю, а у нас это невозможно из-за строгости неравенства, либо получается деление на ноль в неравенстве Г)).
x≠4 (по тем же самым причинам).
Теперь решим каждое неравенство:
А) (x-1)2(x-4)<0
Произведение меньше нуля, это возможно только когда один из множителей меньше нуля. (x-1)2 - не может быть меньше нуля, так как квадрат всегда положителен, получается, что надо только решить неравенство:
x-4<0
x<4, т.е. (-∞; 4), но нам надо выколоть значение из ОДЗ (x≠1).
Тогда получаем:
(-∞; 1)∪(1; 4) - это вариант 3).
Б)
Дробь больше нуля, когда и числитель и знаменатель одновременно или больше нуля или меньше нуля, поэтому рассмотрим два варианта:
a) x-1>0 и x-4>0
x>1 и x>4
Ответ, который подходит для обоих неравенств - x>4 или (4; +∞)
b) x-1<0 и x-4<0
x<1 и x<4
Ответ, который подходит для обоих неравенств - x<1 или (-∞; 1)
Объединяем оба диапазона, получаем:
(-∞; 1)∪(4; +∞) - это решение 1).
В) (x-1)(x-4)<0
Как уже говорилось выше, произведение меньше нуля, когда один из множителей меньше нуля, поэтому опять надо рассмотреть два случая:
a) x-1<0 и x-4>0
x<1 и x>4
Нет такого x, который подходил бы обоим этим неравенствам, т.е. для такого случая решения нет.
b) x-1>0 и x-4<0
x>1 и x<4
Ответ, который подходит для обоих неравенств - 1<x<4 или (1; 4).
Так как в случае а) ответа нет, то (1; 4) и будет решением первоначального неравенства - это решение 4)
Г)
Дробь больше нуля, когда и числитель и знаменатель одновременно или больше нуля или меньше нуля, но так как в числителе стоит квадрат скобки, который всегда положительный, то и знаменатель должен быть положительным:
x-1>0
x>1 или (1; +∞).
Остается только выколоть значение из ОДЗ (x≠4), получаем:
(1; 4)∪(4; +∞) - это решение 2)
Ответ:
НЕРАВЕНСТВА | А) | Б) | В) | Г) |
РЕШЕНИЯ | 3) | 1) | 4) | 2) |
Поделитесь решением
Присоединяйтесь к нам...
Установите соответствие между величинами и их возможными значениями: к каждому элементу первого столбца подберите соответствующий элемент из второго столбца.
ВЕЛИЧИНЫ | ЗНАЧЕНИЯ |
А) масса таблетки лекарства | 1) 3,3464*10-27 кг |
Б) масса Земли | 2) 5 т |
В) масса молекулы водорода | 3) 500 мг |
Г) масса взрослого слона | 4) 5,9726*1024 кг |
Школа приобрела стол, доску, магнитофон и принтер. Известно, что принтер дороже магнитофона, а доска дешевле магнитофона и дешевле стола. Выберите утверждения, которые верны при указанных условиях.
1) Магнитофон дешевле доски.
2) Принтер дороже доски.
3) Доска — самая дешёвая из покупок.
4) Принтер и доска стоят одинаково.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Хозяин договорился с рабочими, что они выкопают ему колодец на следующих условиях: за первый метр он заплатит им 4200 рублей, а за каждый следующий метр — на 1300 рублей больше, чем за предыдущий. Сколько рублей хозяин должен будет заплатить рабочим, если они выкопают колодец глубиной 11 метров?
Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.
НЕРАВЕНСТВА | РЕШЕНИЯ |
А) 2x≥2 | 1) x≥1 |
Б) 0,5x≥2 | 2) x≤1 |
В) 0,5x≤2 | 3) x≤-1 |
Г) 2x≤2 | 4) x≥-1 |
Школа приобрела стол, доску, магнитофон и принтер. Известно, что принтер дороже магнитофона, а доска дешевле магнитофона и дешевле стола. Выберите утверждения, которые верны при указанных условиях.
1) Магнитофон дешевле доски.
2) Принтер дороже доски.
3) Доска — самая дешёвая из покупок.
4) Принтер и доска стоят одинаково.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.
Комментарии: