ЕГЭ, Математика (базовый уровень). Уравнения и неравенства: Задача №2D36FF | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ЕГЭ, Математика (базовый уровень).
Уравнения и неравенства: Задача №2D36FF

Задача №42 из 42
Условие задачи:

Каждому из четырёх неравенств в левом столбце соответствует одно из решений в правом столбце. Установите соответствие между неравенствами и их решениями.

НЕРАВЕНСТВА РЕШЕНИЯ
А) (x-1)2(x-4)<0 1) (-∞; 1)∪(4; +∞)
Б) 2) (1; 4)∪(4; +∞)
В) (x-1)(x-4)<0 3) (-∞; 1)∪(1; 4)
Г) 4) (1; 4)
Впишите в приведённую в ответе таблицу под каждой буквой соответствующий решению номер.

Решение задачи:

Для начала посмотрим на все неравенства:
Во-первых, они строгие.
Во-вторых, они все представляют из себя либо произведение скобок, либо деление.
Следовательно, мы можем записать Область Допустимых Значений (ОДЗ) для всех неравенств сразу:
x≠1 (так как в неравенствах А),Б) и В) левая часть становится равна нулю, а у нас это невозможно из-за строгости неравенства, либо получается деление на ноль в неравенстве Г)).
x≠4 (по тем же самым причинам).
Теперь решим каждое неравенство:
А) (x-1)2(x-4)<0
Произведение меньше нуля, это возможно только когда один из множителей меньше нуля. (x-1)2 - не может быть меньше нуля, так как квадрат всегда положителен, получается, что надо только решить неравенство:
x-4<0
x<4, т.е. (-∞; 4), но нам надо выколоть значение из ОДЗ (x≠1).
Тогда получаем:
(-∞; 1)∪(1; 4) - это вариант 3).
Б)
Дробь больше нуля, когда и числитель и знаменатель одновременно или больше нуля или меньше нуля, поэтому рассмотрим два варианта:
a) x-1>0 и x-4>0
x>1 и x>4
Ответ, который подходит для обоих неравенств - x>4 или (4; +∞)
b) x-1<0 и x-4<0
x<1 и x<4
Ответ, который подходит для обоих неравенств - x<1 или (-∞; 1)
Объединяем оба диапазона, получаем:
(-∞; 1)∪(4; +∞) - это решение 1).
В) (x-1)(x-4)<0
Как уже говорилось выше, произведение меньше нуля, когда один из множителей меньше нуля, поэтому опять надо рассмотреть два случая:
a) x-1<0 и x-4>0
x<1 и x>4
Нет такого x, который подходил бы обоим этим неравенствам, т.е. для такого случая решения нет.
b) x-1>0 и x-4<0
x>1 и x<4
Ответ, который подходит для обоих неравенств - 1<x<4 или (1; 4).
Так как в случае а) ответа нет, то (1; 4) и будет решением первоначального неравенства - это решение 4)
Г)
Дробь больше нуля, когда и числитель и знаменатель одновременно или больше нуля или меньше нуля, но так как в числителе стоит квадрат скобки, который всегда положительный, то и знаменатель должен быть положительным:
x-1>0
x>1 или (1; +∞).
Остается только выколоть значение из ОДЗ (x≠4), получаем:
(1; 4)∪(4; +∞) - это решение 2)
Ответ:

НЕРАВЕНСТВА А) Б) В) Г)
РЕШЕНИЯ 3) 1) 4) 2)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №ECD5FD

Решите уравнение x2+6=5x.
Если уравнение имеет более одного корня, в ответе укажите больший из них.



Задача №BAB44D

Некоторые сотрудники фирмы летом 2013 года отдыхали на даче, а некоторые — на море. Все сотрудники, которые не отдыхали на море, отдыхали на даче. Выберите утверждения, которые верны при указанных условиях.
1) Сотрудник этой фирмы, который летом 2013 года не отдыхал на даче, не отдыхал и на море.
2) Каждый сотрудник этой фирмы отдыхал летом 2013 года или на даче, или на море, или и там, и там.
3) Если сотрудник этой фирмы летом 2013 года не отдыхал на даче, то он отдыхал на море.
4) Если Галина летом 2013 года не отдыхала ни на даче, ни на море, то она является сотрудником этой фирмы. В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.



Задача №B844FB

На координатной прямой отмечено число m и точки A, B, C и D.

Каждой точке соответствует одно из чисел в правом столбце. Установите соответствие между указанными точками и числами.

ТОЧКИ ЧИСЛА
A 1) 6-m
B 2) m2
C 3) m-1
D 4) -3/m
Впишите в приведённую в ответе таблицу под каждой буквой соответствующий числу номер.



Задача №2BCD7F

Найдите корень уравнения



Задача №FCB64E

Школа приобрела стол, доску, магнитофон и принтер. Известно, что принтер дороже магнитофона, а доска дешевле магнитофона и дешевле стола. Выберите утверждения, которые верны при указанных условиях.
1) Магнитофон дешевле доски.
2) Принтер дороже доски.
3) Доска — самая дешёвая из покупок.
4) Принтер и доска стоят одинаково.
В ответе запишите номера выбранных утверждений без пробелов, запятых и других дополнительных символов.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика