В параллелограмме АВСD точки E, F, K и М лежат на его сторонах, как показано на рисунке, причём АЕ = CK, BF = DM. Докажите, что EFKM — параллелограмм.
Рассмотрим треугольники АЕМ и CKF.
АЕ = CK (по условию задачи)
/A=/C (по
свойству параллелограмма)
Т.к. AD=BC (по
свойству параллелограмма), а BF = DM (по условию), то АМ=CF.
Следовательно, треугольники АЕМ и CKF равны (по первому признаку).
Поэтому ЕМ=FK.
Аналогично доказывается, что треугольники EBF и KDM тоже равны, следовательно EF=MK.
Т.е. противоположные стороны данного четырехугольника равны. Соответственно этот четырехугольник - параллелограмм (по
свойству параллелограмма).
Поделитесь решением
Присоединяйтесь к нам...
Найдите тангенс угла В треугольника ABC, изображённого на рисунке.
Найдите площадь трапеции, изображённой на рисунке.
Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
В треугольнике ABC известно, что ∠BAC=62°, AD — биссектриса. Найдите угол BAD. Ответ дайте в градусах.
Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=7 и MB=9. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найдите CD.
Комментарии:
(2015-06-08 11:28:24) Администратор: Света, прямоугольник - это тоже параллелограмм.
(2015-05-26 13:34:16) Света: Но ведь у прямоугольника противолежащие стороны тоже равны.
(2015-05-26 13:33:41) Света: Но ведь у прямоугольника противолежащие стороны тоже равны.
(2015-05-23 20:47:28) Администратор: Малина, а то, что противоположные стороны взаимно равны - доказывает.
(2015-05-23 20:41:29) Малина: То, что треугольники равны, не доказывает, что EFKM параллелограмм