Биссектрисы углов C и D параллелограмма ABCD пересекаются в точке K стороны AB. Докажите, что K — середина AB.
∠CDK=∠AKD (т.к. это
накрест-лежащие углы).
Так как DK -
биссектриса, то:
∠CDK=∠ADK.
Получается, что треугольник AKD -
равнобедренный (по
свойству равнобедренного треугольника).
Тогда, по
определению равнобедренного треугольника:
AD=AK.
∠DCK=∠CKB (т.к. это
накрест-лежащие углы).
Так как CK -
биссектриса, то:
∠DCK=∠KCB.
Получается, что треугольник CKB -
равнобедренный (по
свойству равнобедренного треугольника).
Тогда, по
определению равнобедренного треугольника:
BC=BK.
AD=BC (по
свойству
параллелограмма), следовательно:
AK=KB
Поделитесь решением
Присоединяйтесь к нам...
Четырёхугольник ABCD вписан в окружность. Прямые AB и CD пересекаются в точке K, BK=8, DK=24, BC=18. Найдите AD.
Радиус окружности, вписанной в равносторонний треугольник, равен 5. Найдите высоту этого треугольника.
Окружности радиусов 25 и 100 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.
Найдите тангенс угла AOB.
Центр окружности, описанной около треугольника ABC, лежит на стороне AB. Радиус окружности равен 15. Найдите BC, если AC=24.
Комментарии:
(2018-02-25 20:24:08) Администратор: da13, не за что)
(2018-02-25 20:18:43) da13: Я поняла) СПасибо!
(2018-02-25 20:16:38) da13: Почему СК - биссектриса?
(2016-09-22 15:59:07) Администратор: Карина, мы не помогаем делать домашнее задание, а разбираем задачи, которые будут на экзаменах. Эти задачи берутся с сайта fipi.ru.
(2016-09-22 15:30:19) карина: ав=сд ас=ад доказать что параллелограмм