В треугольнике ABC известны длины сторон AB=30, AC=100, точка O — центр окружности, описанной около треугольника ABC. Прямая BD, перпендикулярная прямой AO, пересекает сторону AC в точке D.
Найдите CD.
Проведем дополнительный отрезок и введем обозначения как показано на рисунке:
Рассмотрим треугольники AEB и AFB.
∠BAE - общий
Треугольник AEB - прямоугольный, т.к. центр окружности лежит на стороне этого треугольника (
теорема об описанной окружности)
Т.е. ∠EBA=90°
∠AFB=90°, т.к. по условию AD ⊥ AE
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда:
AE/AB=AB/AF => AE*AF=AB2
Рассмотрим треугольники AEC и AFD.
∠FAD - общий
∠ACE=90°, т.к. AE - диаметр окружности (
теорема об описанной окружности)
∠AFD=90°, т.к. по условию BD ⊥ AE
Следовательно, по
первому признаку подобия треугольников, данные треугольники
подобны.
Тогда:
AE/AD=AC/AF => AD=AE*AF/AC
Подставляем выше найденное равенство:
AD=AB2/AC=302/100=9
CD=AC-AD=100-9=91
Ответ: 91
Поделитесь решением
Присоединяйтесь к нам...
Дан правильный шестиугольник. Докажите, что если последовательно соединить отрезками середины его сторон, то получится правильный шестиугольник.
От столба высотой 12 м к дому натянут провод, который крепится на высоте 4 м от земли (см. рисунок). Расстояние от дома до столба 15 м. Вычислите длину провода. Ответ дайте в метрах.
Найдите угол АВС равнобедренной трапеции ABCD, если диагональ АС образует с основанием AD и боковой стороной CD углы, равные 20° и 100° соответственно.
На отрезке AB выбрана точка C так, что AC=60 и BC=27. Построена окружность с центром A, проходящая через C. Найдите длину отрезка касательной, проведённой из точки B к этой окружности.
Высота BH ромба ABCD делит его сторону AD на отрезки AH=4 и HD=1. Найдите площадь ромба.
Комментарии:
(2020-05-05 17:14:49) Администратор: Влад, это не бред, а опечатка. Исправлено!
(2020-05-05 16:53:07) Влад: че за бред? как отрезки, лежащие на одной стороне могут быть перпендикулярны?!?!?!