ОГЭ, Математика. Геометрия: Задача №037EE9 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №037EE9

Задача №4 из 1087
Условие задачи:

Лестницу длиной 2 м прислонили к дереву. На какой высоте (в метрах) находится верхний её конец, если нижний конец отстоит от ствола дерева на 1,2 м?

Решение задачи:

Лестница, дерево и земля представляют из себя прямоугольный треугольник. Высоту, на которой находится конец лестницы обозначим как х. Тогда по теореме Пифагора мы можем записать 22=1,22+x2. Отсюда, x2=4-1,44, х2=2,56, x=1,6.
Ответ: 1,6 метра.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №296C71

На окружности отмечены точки A и B так, что меньшая дуга AB равна 66°. Прямая BC касается окружности в точке B так, что угол ABC острый. Найдите угол ABC. Ответ дайте в градусах.



Задача №097863

На окружности по разные стороны от диаметра AB взяты точки M и N. Известно, что /NBA=38°. Найдите угол NMB. Ответ дайте в градусах.



Задача №A92357

Хозяин участка планирует устроить в жилом доме зимнее отопление. Он рассматривает два варианта: электрическое или газовое отопление. Цены на оборудование и стоимость его установки, данные о расходе газа, электроэнергии и их стоимости даны в таблице.

Нагреватель (котёл) Прочее оборудование и монтаж Средн. расход газа/ средн. потребл. мощность Стоимость газа/электро­энергии
Газовое отопление 24 000 руб. 18 280 руб. 1,2 куб. м/ч 5,6 руб./куб. м
Электр. отопление 20 000 руб. 15 000 руб. 5,6 кВт 3,8 руб./(кВт*ч)

Обдумав оба варианта, хозяин решил установить газовое оборудование. Через сколько часов непрерывной работы отопления экономия от использования газа вместо электричества компенсирует разность в стоимости устройства газового и электрического отопления?



Задача №026D2D

Сторона CD параллелограмма ABCD вдвое больше стороны BC. Точка F — середина стороны CD. Докажите, что BF — биссектриса угла ABC.



Задача №345EF5

Точки M и N лежат на стороне AC треугольника ABC на расстояниях соответственно 9 и 11 от вершины A. Найдите радиус окружности, проходящей через точки M и N и касающейся луча AB, если cos∠BAC=11/6.

Комментарии:


(2016-10-18 14:04:11) Администратор: катя, поясните, что значит не та задача?
(2016-10-17 11:54:51) катя: это не та задача как её решить
(2016-05-13 12:32:54) Ульяна: спасибо, очень хорошо объяснили
(2015-12-06 12:47:55) Солнышко: Это задача, очень важная!!! Спасибо)))
(2015-05-26 21:59:28) ангел: спасибо)
(2015-03-19 20:03:56) Администратор: Ишак, корень квадратный из 2,56 это 1,6.
(2015-03-19 19:54:20) Ишак: Откуда 1,6 ?

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика