ОГЭ, Математика. Геометрия: Задача №4D5C0E | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №4D5C0E

Задача №23 из 1087
Условие задачи:

Основание AC равнобедренного треугольника ABC равно 12. Окружность радиуса 8 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.

Решение задачи:

Проведем следующие отрезки (как показано на рисунке 2):
1) Из точки О2 к точке касания окружности и продолжения стороны ВС. (точка Р)
2) Из точки О1 к точке касания окружности и продолжения стороны ВС. (Точка К)
3) Из точки О1 к точке О2.
Заметим, что:
1) СМ=АС/2.
2) СР=СМ, по второму свойству касательной.
3) СМ=СК, по второму свойству касательной.
4) O1O2=R+r.
5) O2Р перпендикулярна BC, по первому свойству касательной.
6) O1К тоже перпендикулярна BC, по свойству касательной.
7) Из пунктов 2) и 3) следует, что СР=СК=СМ=АС/2. Тогда РК=АС/2+АС/2=АС.
Следовательно, O2Р || O1К (по свойству параллельных прямых). Отсюда следует, что О1О2РК - прямоугольная трапеция (по определению трапеции). Рассмотрим эту трапецию.
Проведем отрезок О2Е параллельный РК, а раз он параллелен РК, то в свою очередь перпендикулярен О1К и равен ему. Следовательно получившийся треугольник O1O2Е - прямоугольный.
Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.
Подставим известные нам данные, полученные ранее:
(R+r)2=AC2+(R-r)2. Раскрываем скобки, получаем:
R2+2Rr+r2=AC2+R2-2Rr+r2
2Rr=AC2-2Rr
4Rr=AC2
r=(AC2)/4R
r=122/4*8
r=144/4*8, r=4,5
Ответ: радиус вписанной окружности равен 4,5.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №E374D6

Основание AC равнобедренного треугольника ABC равно 10. Окружность радиуса 7,5 с центром вне этого треугольника касается продолжения боковых сторон треугольника и касается основания AC в его середине. Найдите радиус окружности, вписанной в треугольник ABC.



Задача №96BAA4

Боковая сторона трапеции равна 4, а один из прилегающих к ней углов равен 30°. Найдите площадь трапеции, если её основания равны 2 и 7.



Задача №DCF44C

Найдите площадь трапеции, изображённой на рисунке.



Задача №A0C43B

Окружности радиусов 3 и 33 касаются внешним образом. Точки A и B лежат на первой окружности, точки C и D — на второй. При этом AC и BD — общие касательные окружностей. Найдите расстояние между прямыми AB и CD.



Задача №4DD73F

Сколько досок длиной 3,5 м, шириной 20 см и толщиной 10 мм выйдет из бруса длиной 140 дм, имеющего в сечении прямоугольник размером 50 см × 60 см?

Комментарии:


(2024-05-15 17:53:09) Виолетта: В выпуклом четырехугольнике NPQM диагональ NQ является биссектрисой угла PNM и пересекается с диагональю PM в точке S. Найдите NS, если известно, что около четырехугольника NPQM можно описать окружность, PQ  =  14, SQ = 4 .
(2016-09-01 13:14:52) Администратор: Александра, можно, рисунки добавлены.
(2016-08-22 15:56:46) Александра: А можно ли посмотреть рисунок к третьему свойству касатальной?
(2015-11-29 19:15:42) Администратор: Ксения, я не понял, а в чем разница между моим решением и Вашим?
(2015-11-24 00:13:26) Администратор: Ксения, я не понял, а в чем разница между моим решением и Вашим?
(2015-11-23 13:23:00) Ксения: А так правильно?: PC=CK=CM=6 Проведем О2Е - перпендикуляр к О1К. O2РКЕ-прямоугольник ,значит О2Е=РК=12 Тогда, по теореме Пифагора, мы можем записать: (O1O2)2=(O2Е)2+(O1Е)2.(R+r)2=144+(R-r)2. (R+r)2-(R-r)2=144. ((R+r)+(R-r))((R+r)-(R-r))=144 2R*2r=144 16 *2r=144 32r=144 r=4,5 .

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика