ОГЭ, Математика. Геометрия: Задача №43740F | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №43740F

Задача №22 из 1084
Условие задачи:

Сторона ромба равна 30, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?

Решение задачи:

Рассмотрим треугольник АВС, этот треугольник прямоугольный (по условию задачи). /A=60°, следовательно по теореме о сумме углов треугольника /АВС = 180°-90°-60°=30°. По свойству прямоугольного треугольника АС=АВ/2=30/2=15. Следовательно вторая половина стороны ромба = 30-15=15. Т.е., в данной задаче, высота, проведенная к стороне ромба делит эту сторону на две равные части.
Ответ: длины обоих отрезков равны 15.

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №4796D1

Окружность с центром в точке O описана около равнобедренного треугольника ABC, в котором AB=BC и ∠ABC=25°. Найдите величину угла BOC. Ответ дайте в градусах.



Задача №66BA84

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 192. Найдите стороны треугольника ABC.



Задача №D2652B

В равнобедренной трапеции основания равны 3 и 9, а один из углов между боковой стороной и основанием равен 45°. Найдите площадь трапеции.



Задача №04A87F

Медиана BM треугольника ABC равна 3 и является диаметром окружности, пересекающей сторону BC в её середине. Найдите диаметр описанной окружности треугольника ABC.



Задача №8D1B00

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC относится к длине стороны AB как 6:5. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.

Комментарии:


(2016-03-05 20:16:42) Администратор: Сэм, почему такой ответ показано в решении, а вот почему у Вас другой ответ - сказать не смогу пока не увижу Ваше решение.
(2016-03-04 17:13:22) сэм: почему такой ответ у меня получилось по другому

Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика