ОГЭ, Математика. Геометрия: Задача №37BCA1 | Ответ-Готов 



Юмор

Автор: Таська
Так выглядит современная программа обучения.
...читать далее

ОГЭ, Математика.
Геометрия: Задача №37BCA1

Задача №860 из 1084
Условие задачи:

Тангенс острого угла прямоугольной трапеции равен 2/9. Найдите её большее основание, если меньшее основание равно высоте и равно 54.

Решение задачи:

Введем обозначения ключевых точек и проведем высоту как показано на рисунке.
ABEC - квадрат, так как все углы прямые и все стороны равны.
Т.е. BE=EC=AB=54
tgα=BE/ED=2/9 (по определению).
54/ED=2/9
ED=54*9/2=27*9=243
CD=CE+ED=54+243=297
Ответ: 297

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела



Задача №9EA778

Точка О – центр окружности, /BAC=40° (см. рисунок). Найдите величину угла BOC (в градусах).



Задача №DD88DC

Угол A четырёхугольника ABCD, вписанного в окружность, равен 33°. Найдите угол C этого четырёхугольника. Ответ дайте в градусах.



Задача №0E345D

Площадь круга равна 180. Найдите площадь сектора этого круга, центральный угол которого равен 30°.



Задача №E8391B

Сторона ромба равна 22, а острый угол равен 60°. Высота ромба, опущенная из вершины тупого угла, делит сторону на два отрезка. Каковы длины этих отрезков?



Задача №AEC5CC

Укажите номера верных утверждений.
1) Биссектриса равнобедренного треугольника, проведённая из вершины, противолежащей основанию, делит основание на две равные части.
2) В любом прямоугольнике диагонали взаимно перпендикулярны.
3) Для точки, лежащей на окружности, расстояние до центра окружности равно радиусу.

Комментарии:



Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:


Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2021. Все права защищены. Яндекс.Метрика