Высота BH параллелограмма ABCD делит его сторону AD на отрезки AH=1 и HD=28. Диагональ параллелограмма BD равна 53. Найдите площадь параллелограмма.
Рассмотрим треугольник BDH.
Данный треугольник
прямоугольный, следовательно можно применить
теорему Пифагора:
BD2=HD2+BH2
532=282+BH2
2809=784+BH2
BH2=2025
BH=45
Найдем площадь
параллелограмма:
S=AD*BH=(AH+HD)*BH=(1+28)*45=1305
Ответ: 1305
Поделитесь решением
Присоединяйтесь к нам...
Диагонали AC и BD трапеции ABCD с основаниями BC и AD пересекаются в точке O, BC=11, AD=15, AC=52. Найдите AO.
Точка О – центр окружности, /ACB=25° (см. рисунок). Найдите величину угла AOB (в градусах).
Диагонали AC и BD прямоугольника ABCD пересекаются
в точке O, BO=37, AB=56. Найдите AC.
Укажите номера верных утверждений.
1) Если угол острый, то смежный с ним угол также является острым.
2) Диагонали квадрата взаимно перпендикулярны.
3) В плоскости все точки, равноудалённые от заданной точки, лежат на одной окружности.
Высота равностороннего треугольника равна 15√
Комментарии: