Юмор

Автор: Алла
Идет экзамен. Студент (С) понимает, что не может ответить на вопрос и мучительно рассказыв...читать далее

Решение задачи:

Чтобы определить точку касания двух графиков, необходимо решить систему, составленную их функций этих графиков:

Подставим первое уравнение во второе:
x2+(2x+b)2=5
Раскроем скобку при помощи формулы квадрат суммы:
x2+(2x)2+2*2x*b+b2=5
x2+4x2+4xb+b2=5
5x2+4xb+b2-5=0
Решим это квадратное уравнение через дискриминант:
D=(4b)2-4*5*(b2-5)=16b2-20(b2-5)=16b2-20b2+100=-4b2+100
В условии сказано, что прямая КАСАЕТСЯ окружности, следовательно имеет только одну общую точку, следовательно, решение системы должно быть только одно, т.е. решение квадратного уравнения тоже должно быть одно. Для этого дискриминант должен быть равен нулю:
-4b2+100=0
-4b2=-100 |:(-4)
b2=25
b1=5
b2=-5
Мы получили такие b, при которых прямая y=2x+b будет иметь только одну общую точку (т.е. касаться) с окружностью x2+y2=5.
Продолжим решать квадратное уравнение для каждого b:
1) b=5
Тогда наше уравнение имеет вид:
5x2+4x*5+52-5=0
5x2+20x+25-5=0
5x2+20x+20=0 |:5
x2+4x+4=0
Дискриминант равен нулю, мы его сами приравняли к нулю. Найдем x:
x=-4/(2*1)=-4/2=-2 - это абцисса точки пересечения, она отрицательна, поэтому не подходит по условию задачи.
2) b=-5
Тогда наше уравнение имеет вид:
5x2+4x(-5)+(-5)2-5=0
5x2-20x+25-5=0
5x2-20x+20=0 |:5
x2-4x+4=0
x=-(-4)/2=4/2=2 - эта абцисса подходит под условие.
Подставим эти значения х и b в уравнение прямой:
y=2x+b
y=2*2-5
y=-1 - это ордината точки пересечения.
Ответ: (2;-1)

Поделитесь решением

Присоединяйтесь к нам...

Вы можете поблагодарить автора, написать свои претензии или предложения на странице 'Про нас'


Другие задачи из этого раздела

Задача №FF61EE

В треугольнике ABC угол C прямой, AC=4, cosA=0,8. Найдите AB.

Задача №FDEABD

В треугольнике два угла равны 43° и 88°. Найдите его третий угол. Ответ дайте в градусах.

Задача №FE6C06

Картинка имеет форму прямоугольника со сторонами 24 см и 37 см. Её наклеили на белую бумагу так, что вокруг картинки получилась белая окантовка одинаковой ширины. Площадь, которую занимает картинка с окантовкой, равна 1440 см2. Какова ширина окантовки? Ответ дайте в сантиметрах.

Задача №22636E

Прямая, параллельная стороне AC треугольника ABC, пересекает стороны AB и BC в точках M и N соответственно, AC=36, MN=28. Площадь треугольника ABC равна 162. Найдите площадь треугольника MBN.

Задача №C13899

Медиана BM и биссектриса AP треугольника ABC пересекаются в точке K, длина стороны AC втрое больше длины стороны AB. Найдите отношение площади треугольника AKM к площади четырёхугольника KPCM.

Комментарии:


Хочу получать новые решения

email рассылки Ни какого спама

email рассылки
X

Значение не введено

X

Задайте вопрос по этой задаче.

Ваше имя:

Рейтинг@Mail.ru Copyright otvet-gotov.ru 2014-2019. Все права защищены. Яндекс.Метрика